
CSCI 136
Data Structures &

Advanced Programming

Lecture 10
Fall 2017

Instructors: Bills

Administrative Details

• First Problem Set is online
• Due by 11:00 pm Thursday night
• Drop it off in your instructor’s CS mailbox outside of TCL

303
• If next Friday is NOT Mountain Day, you can bring it to

class instead!

Last Time

• Measuring Growth
• Big-O

Today

• Applying O() to Compute Complexity
• Recursion
• Mathematical Induction (Weak)

• Recursion on Chains
• Mathematical Induction (Strong)

Input-dependent Running Times
• Algorithms may have different running times for

different inputs of a given size
• Best case (typically not useful)

• Find item in first place that we look O(1)

• Worst case (generally useful, sometimes misleading)
• Don’t find item in list O(n)

• Average case (useful, but often hard to compute)
• Linear search O(n)

5

Vectors vs. SLL

• Compare runtime of
• size
• addLast, removeLast, getLast
• addFirst, removeFirst, getFirst
• get(int index), set(E d, int index)
• remove(int index)
• contains(E d)
• remove(E d)

6

List Operations : Worst-Case
For a singly-linked list of n items
• O(1): size(), isEmpty(), firstElement()

• lastElement() (if the list has a tail reference)

• O(n): get(i), set(i), indexOf(), contains(), remove(elt),
remove(i)
• lastElement() (if the list doesn’t have a tail reference)

• What about add/remove methods?
• O(1): addFirst(), removeFirst()
• O(n): add(i),add()/addLast(), remove(i)/remove()/removeLast()

For a doubly-linked list, adding/removing from the
tail becomes O(1)

7

Vector Operations : Worst-Case
For n = Vector size (not capacity!):
• O(1): size(), capacity(), isEmpty(), get(i), set(i),

firstElement(), lastElement()
• O(n): indexOf(), contains(), remove(elt), remove(i)
• What about add methods?

• If Vector doesn’t need to grow
• add(elt) is O(1) but add(elt, i) is O(n)

• Otherwise, depends on ensureCapacity() time
• Time to compute newLength : O(log2(n))

– If doubling; otherwise could be O(n) : n is new array size

• Time to copy array: O(n)
• O(log2(n)) + O(n) is O(n)

8

Vectors: Add Method Complexity

Suppose we grow the Vector’s array by a fixed amount d.
How long does it take to add n items to an empty Vector?
• The array will be copied each time its capacity needs to

exceed a multiple of d
• At sizes 0, d, 2d, … , n/d.

• Copying an array of size kd takes ckd steps for some
constant c, giving a total of
∑ 𝑐𝑘𝑑%/'
()* = 𝑐𝑑	∑ 𝑘%/'

()* = 𝑐𝑑	(%
'
)(%
'
+ 1)/2 = 𝑂(𝑛4)

9

Vectors: Add Method Complexity

Suppose we grow the Vector’s array by doubling.
How long does it take to add n items to an empty Vector?
• The array will be copied each time its capacity needs to

exceed a power of 2
• At sizes 0, 1, 2, 4, 8 … 25678 %

• Copying an array of size 2k takes c 2k steps for some
constant c, giving a total of

∑ 𝑐2(5678 %
()* = 𝑐	 ∑ 2(5678 %

()* = 𝑐	(25678 %9*−1)= 𝑂(𝑛)

• Very cool!

10

Vectors vs. SLL
Operation Vector SLL

size O(1) O(1)

addLast O(1) or O(n)(if resize) O(n)

removeLast O(1) O(n)

getLast O(1) O(n)

addFirst O(n) O(1)

removeFirst O(n) O(1)

getFirst O(1) O(1)

get(i) O(1) O(n)

set(i) O(1) O(n)

remove(i) O(n) O(n)

contains O(n) O(n)

remove(o) O(n) O(n) 11

Common Complexities
For n = measure of problem size:
• O(1): constant time and space
• O(log n): divide and conquer algorithms, binary search
• O(n): linear dependence, simple list lookup
• O(n log n): divide and conquer sorting algorithms
• O(n2): matrix addition, selection sort
• O(n3): matrix multiplication
• O(nk): cell phone switching algorithms
• O(2n): subset sum, graph 3-coloring, satisfiability, ...
• O(n!): traveling salesman problem (in fact O(n22n))

12

Recursion

• General problem
solving strategy
• Break problem into

sub-problems of same
type

• Solve sub-problems
• Combine sub-problem

solutions into solution
for original problem

Recursion

• Many algorithms are recursive
• Can be easier to understand (and prove

correctness/state efficiency of) than iterative
versions

• Today we will review recursion and then talk
about techniques for reasoning about
recursive algorithms

Factorial

• n! = n · (n-1) · (n-2) · … · 1
• How can we implement this?
• We could use a for loop…

• But we could also write it recursively
• n! = n · (n-1)!
• 0! = 1

fact(3)

fact(2)

fact(1)

fact(0)

1

1*1=1

2*1 = 2

3*2 = 6

Factorial

Factorial

• In recursion, we always use the same basic
approach

• What’s our base case? [Sometimes “cases”]
• n=0: fact(0) = 1

• What’s the recursive relationship?
• n>0: fact(n) = n · fact(n-1)

fact.java
public class fact{

// Pre: n >= 0
public static int fact(int n) {

if (n==0) {
return 1;

}
else {

return n*fact(n-1);
}

}

public static void main(String args[]) {
System.out.println(fact(Integer.valueOf(args[0]).intValue()));

}

}

Fibonacci Numbers

• 1, 1, 2, 3, 5, 8, 13, ...
• Definition
• F0 = 1, F1 = 1
• For n > 1, Fn = Fn-1 + Fn-2

• Inherently recursive!
• It appears almost everywhere
• Growth: Populations, plant features
• Architecture
• Data Structures!

fib.java
public class fib{

// pre: n is non-negative
public static int fib(int n) {

if (n==0 || n == 1) {
return 1;

}
else {

return fib(n – 1) + fib(n – 2);
}

}

public static void main(String args[]) {
System.out.println(fib(Integer.valueOf(args[0]).intValue()));

}

}

Towers of Hanoi

• Demo
• Base case:
• One disk: Move from start to finish

• Recursive case (n disks):
• Move smallest n-1 disks from start to temp
• Move bottom disk from start to finish
• Move smallest n-1 disks from temp to finish

• Let’s try to write it....

Recursion Tradeoffs

• Advantages
• Often easier to construct recursive solution
• Code is usually cleaner
• Some problems do not have obvious non-

recursive solutions

• Disadvantages
• Overhead of recursive calls
• Can use lots of memory (need to store state for

each recursive call until base case is reached)
• E.g. recursive fibonacci method

Alternate contains() for Vector
// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {

if (from > to)
return false; // Base case: empty range

else
return elt.equals(elementData[from]) ||

contains(elt, from+1, to);
}

public boolean contains(E elt) {
return contains(elt, 0, size()-1); }

• What’s the time complexity of contains?
• O(to – from + 1) = O(n) (n is the portion of the array searched)
• Why?

• Bootstrapping argument! True for: to – from = 0, to – from = 1, …

• Let’s formalize this bootstrapping idea....

Mathematical Induction

• The mathematical cousin of recursion is
induction

• Induction is a proof technique
• Reflects the structure of the natural

numbers
• Use to simultaneously prove an infinite

number of theorems!

Mathematical Induction
• Example: Prove that for every n ≥ 0

𝑃% ∶ 	∑ 𝑖%
>)? = 0 + 1 +	…+ 𝑛	=

%(%9*)
4

• Proof by induction:
• Base case: Pn is true for n = 0 (just check it!)
• Inductive hypothesis: If Pn is true for some n≥0,

then Pn+1 is true.

𝑃%9*: 0 + 1 +	…+ 𝑛 + 𝑛 + 1 =
𝑛 + 1 𝑛 + 1 + 1

2 =
(𝑛 + 1)(𝑛 + 2)

2
Check: 0 + 1 +	…+ 𝑛 + 𝑛 + 1 = % %9*

4
+ 𝑛 + 1 = (%9*)(%94)

4
• First equality holds by assumed truth of Pn!

Mathematical Induction

Principle of Mathematical Induction (Weak)
Let P(0), P(1), P(2), ... Be a sequence of statements,
each of which could be either true or false. Suppose
that

1. P(0) is true, and
2. For all n ≥ 0, if P(n) is true, then so is P(n+1).

Then all of the statements are true!

Note: Often Property 2 is stated as
2. For all n > 0, if P(n-1) is true, then so is P(n).

Apology: I do this a lot, as you’ll see on future slides!

