CSCI 136

Data Structures \&
 Advanced Programming

Lecture 10
Fall 2017
Instructors: Bills

Administrative Details

- First Problem Set is online
- Due by II:00 pm Thursday night
- Drop it off in your instructor's CS mailbox outside of TCL 303
- If next Friday is NOT Mountain Day, you can bring it to class instead!

Last Time

- Measuring Growth
- Big-O

Today

- Applying O() to Compute Complexity
- Recursion
- Mathematical Induction (Weak)
- Recursion on Chains
- Mathematical Induction (Strong)

Input-dependent Running Times

- Algorithms may have different running times for different inputs of a given size
- Best case (typically not useful)
- Find item in first place that we look $O(I)$
- Worst case (generally useful, sometimes misleading)
- Don't find item in list $\mathrm{O}(\mathrm{n})$
- Average case (useful, but often hard to compute)
- Linear search $O(\mathrm{n})$

Vectors vs. SLL

- Compare runtime of
- size
- addLast, removeLast, getLast
- addFirst, removeFirst, getFirst
- get(int index), set(E d, int index)
- remove(int index)
- contains(E d)
- remove(E d)

List Operations: Worst-Case

For a singly-linked list of n items

- O(I): size(), isEmpty(), firstElement()
- lastElement() (if the list has a tail reference)
- O(n): get(i), set(i), indexOf(), contains(), remove(elt), remove(i)
- lastElement() (if the list doesn't have a tail reference)
- What about add/remove methods?
- O(I): addFirst(), removeFirst()
- $\mathrm{O}(\mathrm{n}): \operatorname{add}(\mathrm{i})$, add $($ ()/addLast(), remove(i$) /$ remove()/removeLast()

For a doubly-linked list, adding/removing from the tail becomes $\mathrm{O}(\mathrm{I})$

Vector Operations : Worst-Case

For $\mathrm{n}=$ Vector size (not capacity!):

- $\mathrm{O}(\mathrm{I})$: size(), capacity(), isEmpty(), get(i), set(i), firstElement(), lastElement()
- O(n): indexOf(), contains(), remove(elt), remove(i)
- What about add methods?
- If Vector doesn't need to grow
- add(elt) is $O(1)$ but add(elt, $i)$ is $O(n)$
- Otherwise, depends on ensureCapacity() time
- Time to compute newLength : $\mathrm{O}\left(\log _{2}(\mathrm{n})\right.$)
- If doubling; otherwise could be $O(n)$: n is new array size
- Time to copy array: $O(n)$
- $\mathrm{O}\left(\log _{2}(\mathrm{n})\right)+\mathrm{O}(\mathrm{n})$ is $\mathrm{O}(\mathrm{n})$

Vectors: Add Method Complexity

Suppose we grow the Vector's array by a fixed amount d. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a multiple of d
- At sizes 0, d, 2d, ... , n/d.
- Copying an array of size kd takes ckd steps for some constant c , giving a total of

$$
\sum_{k=1}^{n / d} c k d=c d \sum_{k=1}^{n / d} k=c d\left(\frac{n}{d}\right)\left(\frac{n}{d}+1\right) / 2=O\left(n^{2}\right)
$$

Vectors: Add Method Complexity

Suppose we grow the Vector's array by doubling. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a power of 2
- At sizes $0, I, 2,4,8 \ldots 2^{\log _{2} n}$
- Copying an array of size 2^{k} takes c 2^{k} steps for some constant c , giving a total of

$$
\sum_{k=1}^{\log _{2} n} c 2^{k}=c \sum_{k=1}^{\log _{2} n} 2^{k}=c\left(2^{\log _{2} n+1}-1\right)=O(n)
$$

- Very cool!

Vectors vs. SLL

Operation	Vector	SLL
size	$\mathrm{O}(\mathrm{I})$	$\mathrm{O}(\mathrm{I})$
addLast	$\mathrm{O}(\mathrm{I})$ or $\mathrm{O}(\mathrm{n})$ (if resize $)$	$\mathrm{O}(\mathrm{n})$
removeLast	$\mathrm{O}(\mathrm{I})$	$\mathrm{O}(\mathrm{n})$
getLast	$\mathrm{O}(\mathrm{I})$	$\mathrm{O}(\mathrm{n})$
addFirst	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{I})$
removeFirst	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{I})$
getFirst	$\mathrm{O}(\mathrm{I})$	$\mathrm{O}(\mathrm{I})$
get(i)	$\mathrm{O}(\mathrm{I})$	$\mathrm{O}(\mathrm{n})$
set(i)	$\mathrm{O}(\mathrm{I})$	$\mathrm{O}(\mathrm{n})$
remove(i)	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
contains	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
remove(o)	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$

Common Complexities

For $\mathrm{n}=$ measure of problem size:

- $\mathrm{O}(\mathrm{I})$: constant time and space
- $O(\log n)$: divide and conquer algorithms, binary search
- $O(n)$: linear dependence, simple list lookup
- $O(n \log n)$: divide and conquer sorting algorithms
- $O\left(n^{2}\right)$: matrix addition, selection sort
- $O\left(n^{3}\right)$: matrix multiplication
- $O\left(n^{\mathrm{k}}\right)$: cell phone switching algorithms
- $O\left(2^{\text {n }}\right)$: subset sum, graph 3-coloring, satisfiability, ...
- $\mathrm{O}(\mathrm{n}!)$: traveling salesman problem (in fact $\mathrm{O}\left(\mathrm{n}^{2} 2^{\mathrm{n}}\right)$)

Recursion

- General problem solving strategy
- Break problem into sub-problems of same type
- Solve sub-problems
- Combine sub-problem solutions into solution for original problem

Recursion

- Many algorithms are recursive
- Can be easier to understand (and prove correctness/state efficiency of) than iterative versions
- Today we will review recursion and then talk about techniques for reasoning about recursive algorithms

Factorial

- $\mathrm{n}!=\mathrm{n} \cdot(\mathrm{n}-\mathrm{I}) \cdot(\mathrm{n}-2) \cdot \ldots \cdot I$
- How can we implement this?
- We could use a for loop...
- But we could also write it recursively
- $\mathrm{n}!=\mathrm{n} \cdot(\mathrm{n}-\mathrm{I})$!
- $0!=1$

Factorial

Factorial

- In recursion, we always use the same basic approach
- What's our base case? [Sometimes "cases"]
- $\mathrm{n}=0$: $\operatorname{fact}(0)=1$
- What's the recursive relationship?
- $\mathrm{n}>0$: $\operatorname{fact}(\mathrm{n})=\mathrm{n} \cdot \operatorname{fact}(\mathrm{n}-\mathrm{I})$

fact.java

```
public class fact{
// Pre: n >= 0
public static int fact(int n) {
    if (n==0) {
        return 1;
    }
    else {
        return n*fact(n-1);
    }
}
public static void main(String args[]) {
    System.out.println(fact(Integer.valueOf(args[0]).intValue()));
}
}
```


Fibonacci Numbers

- I, I, 2, 3, 5, 8, I3, ...
- Definition
- $\mathrm{F}_{0}=\mathrm{I}, \mathrm{F}_{\mathrm{I}}=\mathrm{I}$
- For $n>I, F_{n}=F_{n-1}+F_{n-2}$
- Inherently recursive!
- It appears almost everywhere
- Growth: Populations, plant features
- Architecture
- Data Structures!

fib.java

```
public class fib{
    // pre: n is non-negative
        public static int fib(int n) {
        if (n==0 || n == 1) {
            return 1;
        }
        else {
            return fib(n - 1) + fib(n - 2);
        }
    }
```

 public static void main(String args[]) \{
 System. out. println(fib(Integer.valueOf(args[0]).intValue()));
 \}
 \}

Towers of Hanoi

- Demo
- Base case:
- One disk: Move from start to finish
- Recursive case (n disks):
- Move smallest n -I disks from start to temp
- Move bottom disk from start to finish
- Move smallest n -I disks from temp to finish
- Let's try to write it....

Recursion Tradeoffs

- Advantages
- Often easier to construct recursive solution
- Code is usually cleaner
- Some problems do not have obvious nonrecursive solutions
- Disadvantages
- Overhead of recursive calls
- Can use lots of memory (need to store state for each recursive call until base case is reached)
- E.g. recursive fibonacci method

Alternate contains() for Vector

```
// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {
    if (from > to)
        return false; // Base case: empty range
    else
        return elt.equals(elementData[from]) ||
        contains(elt, from+1, to);
}
public boolean contains(E elt) {
    return contains(elt, 0, size()-1); }
```

- What's the time complexity of contains?
- O (to - from +I$)=\mathrm{O}(\mathrm{n})(\mathrm{n}$ is the portion of the array searched)
- Why?
- Bootstrapping argument! True for: to - from $=0$, to - from $=I, \ldots$
- Let's formalize this bootstrapping idea....

Mathematical Induction

- The mathematical cousin of recursion is induction
- Induction is a proof technique
- Reflects the structure of the natural numbers

Use to simultaneously prove an infinite number of theorems!

Mathematical Induction

- Example: Prove that for every $\mathrm{n} \geq 0$

$$
P_{n}: \sum_{i=0}^{n} i=0+1+\ldots+n=\frac{n(n+1)}{2}
$$

- Proof by induction:
- Base case: P_{n} is true for $n=0$ (just check it!)
- Inductive hypothesis: If P_{n} is true for some $n \geq 0$, then P_{n+1} is true.
$P_{n+1}: 0+1+\ldots+n+(n+1)=\frac{(n+1)((n+1)+1)}{2}=\frac{(n+1)(n+2)}{2}$
Check: $0+1+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}$
- First equality holds by assumed truth of P_{n} !

Mathematical Induction

Principle of Mathematical Induction (Weak)
Let $P(0), P(I), P(2), \ldots$ Be a sequence of statements, each of which could be either true or false. Suppose that

1. $P(0)$ is true, and
2. For all $n \geq 0$, if $P(n)$ is true, then so is $P(n+l)$.

Then all of the statements are true!

Note: Often Property 2 is stated as
2. For all $n>0$, if $P(n-I)$ is true, then so is $P(n)$. Apology: I do this a lot, as you'll see on future slides!

