
Lecture 24: Exceptions and Iterators



Exceptions

Python alerts us of an extraordinary event by throwing an Exception

>>> l = list(range(10))

>>> l[10]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: list index out of range

An IndexError is a type of exception

All exceptions are classes that inherit from the BaseException class



Exceptions

We can separate our code’s normal control flow from error handling using try and
except:

1 l = list(range(10))
2 try:
3 l[10]
4 except IndexError as ie:
5 print(”Caught an IndexError: {} −− moving on”.format(ie))
6
7 print(l[0])

produces:

Caught an IndexError: list index out of range -- moving on

0



Exceptions

But only catch what you can handle by catching the most specific exception class(es)

1 def int fraction(num, denom):
2 try:
3 return num // denom
4 except Exception as e:
5 print(”Can’t divide by zero −− returning 0”)
6 return 0
7

This code catches and handles a ZeroDivisionError properly

But other exception classes also inherit from Exception

>>> int_fraction(3, ’a’):

Can’t divide by zero -- retuning 0

0

We mistakenly handle a TypeError as if it were a ZeroDivisionError



Exceptions

But only catch what you can handle by catching the most specific exception class(es)

1 def int fraction(num, denom):
2 try:
3 return num // denom
4 except Exception as e:
5 print(”Can’t divide by zero −− returning 0”)
6 return 0
7

This code catches and handles a ZeroDivisionError properly

But other exception classes also inherit from Exception

>>> int_fraction(3, ’a’):

Can’t divide by zero -- retuning 0

0

We mistakenly handle a TypeError as if it were a ZeroDivisionError



Exceptions

To throw an exception, raise the name of a class that is derived from BaseException

1 def next (self):
2 if self. has more items():
3 return self. next item()
4 else:
5 raise StopIteration()
6

Iterators depend on exeptions to indicate they are out of items



Iterators

Recall that something is iterable if it supports the iter function—that is the method
iter is defined—and returns an iterator. An iterator is something that

supports the next function—that is, the method next is defined;

throws a StopIteration when the iterator is empty; and

returns itself under an iter call.

Iterators may be defined using classes (this lecture) or with generators (next lecture).



An Iterator for Squares

1 class Squares:
2
3 def init (self, threshold=None):
4 self. state = 1
5 self. threshold = threshold
6
7 def below threshold(self):
8 return self. threshold is None or self. state∗∗2 < self. threshold
9

10 def iter (self):
11 return self
12
13 def next (self):
14 if self. below threshold():
15 sq = self. state∗∗2
16 self. state += 1
17 return sq
18 else:
19 raise StopIteration()



An Iterator for Even Squares

1 class EvenSquares(Squares):
2
3 def next (self):
4 sq = super(). next ()
5 while (sq % 2 != 0):
6 sq = super(). next ()
7 return sq


