
CSCI 135: DIVING INTO THE DELUGE OF DATA

LECTURE 5
functions, parameters, arguments, and modules

def polar(x, y):
 '''convert (x,y) into polar coordinates
 where the angle is in radians
 '''
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 return (radius, angle)

def polar(x, y):
 '''convert (x,y) into polar coordinates
 where the angle is in radians
 '''
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 return (radius, angle)

Use the python keyword def to define a function

def polar(x, y):
 '''convert (x,y) into polar coordinates
 where the angle is in radians
 '''
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 return (radius, angle)

polar is the name of the function

def polar(x, y):
 '''convert (x,y) into polar coordinates
 where the angle is in radians
 '''
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 return (radius, angle)

x and y are the function parameters

def polar(x, y):
 '''convert (x,y) into polar coordinates
 where the angle is in radians
 '''
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 return (radius, angle)

def polar(x, y): is the function header

def polar(x, y):
 '''convert (x,y) into polar coordinates
 where the angle is in radians
 '''
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 return (radius, angle)

The string following the function
header is the docstring. It gets
bound to the __doc__ method of the
polar function object

def polar(x, y):
 '''convert (x,y) into polar coordinates
 where the angle is in radians
 '''
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 return (radius, angle)

The function body is a sequence of python
expressions. Notice that indentation is significant.
All code indented at the same level is part of the
same block

def polar(x, y):
 '''convert (x,y) into polar coordinates
 where the angle is in radians
 '''
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 return (radius, angle)

variables defined within a block are local to that
block (they shadow, but don’t destroy variables of
the same name in outer blocks but are accessible to
inner blocks). These rules mean that Python is a
lexically-scoped language.

def polar(x, y):
 '''convert (x,y) into polar coordinates
 where the angle is in radians
 '''
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 return (radius, angle)

functions can be viewed as procedures, which abstract
away a common set of actions, or as mathematical
functions, which compute a value. Use return in a
function to return a value

def polar(x, y):
 '''convert (x,y) into polar coordinates
 where the angle is in radians
 '''
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 return (radius, angle)

functions are called with (or applied to) arguments.
The objects assigned to the arguments are passed to
the function and bound to the formal parameters.
Here the object assigned to a is bound to x and the
object assigned to b is bound to y.

>>> a = 1/math.sqrt(2)
>>> b = 1/math.sqrt(2)
>>> polar(a,b)

def polar(x, y):
 '''convert (x,y) into polar coordinates
 where the angle is in radians
 '''
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 return (radius, angle)

Everything in python is an object. Functions are
function objects and can be passed as arguments to
other functions. When a programming language
supports passing functions as first-order objects it
is said to support higher-order functions.

>>> a = 1/math.sqrt(2)
>>> b = 1/math.sqrt(2)
>>> polar(a,b)
>>> type(polar)
class <‘function’>

def polar(x, y, deg=False):
 '''convert (x,y) into polar coordinates
 where the angle is in radians (default)
 or degrees (deg=True)
 ‘’'
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 if deg:
 return (radius, angle * 180 / math.pi)
 else:
 return (radius, angle)

def polar(x, y, deg=False):
 '''convert (x,y) into polar coordinates
 where the angle is in radians (default)
 or degrees (deg=True)
 ‘’'
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 if deg:
 return (radius, angle * 180 / math.pi)
 else:
 return (radius, angle)

arguments may have default values; arguments without
default values cannot appear after arguments with
default values

def polar(x, y, deg=False):
 '''convert (x,y) into polar coordinates
 where the angle is in radians (default)
 or degrees (deg=True)
 ‘’'
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 if deg:
 return (radius, angle * 180 / math.pi)
 else:
 return (radius, angle)

Conditional statements allow you to branch the flow
of execution. The control flow of conditional
statements follows the rules of indentation;

def polar(x, y, deg=False):
 '''convert (x,y) into polar coordinates
 where the angle is in radians (default)
 or degrees (deg=True)
 ‘’'
 radius = math.sqrt(x*x + y*y)
 angle = math.atan2(y, x)
 if deg:
 return (radius, angle * 180 / math.pi)
 else:
 return (radius, angle)

the test of a conditional statement is a Python
expression evaluating to either True or False; all
Python objects have related boolean values; test
expressions often involve equality operation ==

•even(x) returns True if and only if x is even
•odd(x) returns True if and only if x is odd
•min(x,y) returns the smaller of x and y
•max(x,y) returns the larger of x and y
•perfect_square(x) returns True if and only if x is a
perfect square (i.e. its square root is an integer)

•fact(x) returns x!
 (note: fact(0)==1 and fact(n) == n * fact(n-1))

