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Towers of Hanoi

The Towers of Hanoi puzzle is a classic problem, often used to demonstrate the power and simplicity of recursion.
The game consists of three rods and a tower of discs in decreasing diameter. The goal is to move all the discs from
one end rod to the other end rod using the middle rod as a helper. You can move one disc at a time and you can only
place a disc of smaller diameter on top of a disc of larger diameter. Here’s some background from Wikipedia:

The puzzle was invented by the French mathematician Edouard Lucas in 1883. There is a story about
an Indian temple in Kashi Vishwanath which contains a large room with three time-worn posts in it
surrounded by 64 golden disks. Brahmin priests, acting out the command of an ancient prophecy, have
been moving these disks, in accordance with the immutable rules of the Brahma, since that time. The
puzzle is therefore also known as the Tower of Brahma puzzle. According to the legend, when the last
move of the puzzle will be completed, the world will end. It is not clear whether Lucas invented this
legend or was inspired by it.

Recursive Solution

Suppose we have n discs, labelled 1 . . . n in increasing order by diameter. If we knew how to move the first n − 1
discs to the middle rod (call it the helper rod), then we could move disc n to to the target rod, and then use the same
procedure to again move the n− 1 discs from the middle rod to the target rod. This is exactly the recursive solution
we hoped for. Here is one version that prints directions for the movement.

1 def hanoi(n, src, trgt, helper):
2 if (n > 0):
3 hanoi(n−1, src, helper, trgt)
4 print(”Moving disk {} from {} to {}”.format(n,src,trgt))
5 hanoi(n−1, helper, trgt, src)

We might also be interested in solving the end of the world problem. Let’s count how many moves are required
to transfer the stack from one end to the other. We can do this by thinking about the print statement as a single
move. Our solution just adds 1 to the number of moves it takes to transfer the first n − 1 discs to the middle rod as
well as the number of moves it takes to transfer them over to the target rod.

1 def hanoi count(n, src, trgt, helper):
2 if (n > 0):
3 c1 = hanoi count(n−1, src, helper, trgt)
4 c2 = hanoi count(n−1, helper, trgt, src)
5 return c1 + 1 + c2
6 else:
7 return 0

Notice that to move n discs, it takes 2n − 1 moves. Suppose that it takes one second to move one disc. To move
64 discs would take 264 − 1 seconds, which is over 500 Billion years.
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Bubbles

Suppose you wanted to create one of the bubble images below for a given natural number n.

Limiting ourselves to the unit square where the bottom left is (0, 0), we could generate a circle (in the form of a
center point and radius) and then recursively generate four more circles. Each level of the recursion decreases n by
1 until we reach n = 0, which means stop.

Here is a function to recursively compute all the circles (centers and radii) in Python and return them in a list.

1 def bubble(n, coords=((0, 0), (1, 1))):
2 if n==0:
3 return []
4 else:
5 (x0, y0), (x1, y1) = coords
6 diam = (x1−x0)/2
7 bubbles = [((x0+diam,y0+diam),diam/2)]
8 bubbles.extend(bubble(n−1, ((x0, y0), (x0+diam, y0+diam))))
9 bubbles.extend(bubble(n−1, ((x0, y0+diam), (x0+diam, y1))))

10 bubbles.extend(bubble(n−1, ((x0+diam, y0), (x1, y0+diam))))
11 bubbles.extend(bubble(n−1, ((x0+diam, y0+diam), (x1, y1))))
12 return bubbles

Some comments:

• To write this function recursively, we need to know n, but we also need a rectangle to provide context. Thus,
we also include optional coords parameters.

• The base case for our function is when n==0. Here we don’t have any points, so we return an empty list.

• The inductive case computes the centroid of the square along with the diameter and then creates a list
bubbles with that single pair. Now we assume that the four recursive calls correctly calculate all the smaller
circles for the four quadrants, extend bubbles appropriately, and return the list.
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Generating the image now requires iterating over the circles, interpolating the coordinates, and drawing them
appropriately. Here is the Python code. The function takes a depth n, image dimensions w and h, and an output file
name output. Notice that our interpolation function inter switches the y-coordinate appropriately. Also, the
ellipse method assumes the first coordinate is the top-left corner of a bounding box and the second coordinate is
the bottom-right corner of the bounding box.

1 def draw(n, w, h, output):
2
3 def inter(x, y):
4 return (int(x∗w), int(h−y∗h))
5
6 im = Image.new(”RGB”, (w, h), (255, 255, 255))
7 for (x,y), radius in bubble(n):
8 coords = [inter(x−radius, y+radius), inter(x+radius,y−radius)]
9 ImageDraw.Draw(im).ellipse(coords, fill=(255,0,0))

10 im.save(output, ”PNG”)
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Sierpinksi Triangles

Below are five Sierpinksi Triangles. You should write a program called triangle.py that, when called from the
command line with argument N, produces a single Sierpinksi Triangle of depth N. You should also pass it an output
file name and an image dimension. Here is some example syntax for creating a triangle of depth 8.

1 from PIL import Image, ImageDraw
2 import sys
3
4
5 def triangles(n, x0=0.5, y0=1.0, x1=0.0, y1=0.0, x2=1.0, y2=0.0):
6
7 if (n == 0):
8 return []
9 else:

10 x3 = x1 + ((x0 − x1) / 2)
11 y3 = y1 + ((y0 − y1) / 2)
12 x4 = x0 + ((x2 − x0) / 2)
13 y4 = y3
14 x5 = x1 + ((x2 − x1) / 2)
15 y5 = y1
16 tris = [((x3, y3), (x4, y4), (x5, y5))]
17 tris.extend(triangles(n − 1, x3, y3, x1, y1, x5, y5))
18 tris.extend(triangles(n − 1, x4, y4, x5, y5, x2, y2))
19 tris.extend(triangles(n − 1, x0, y0, x3, y3, x4, y4))
20 return tris
21
22
23 def draw(n, w, h, output):
24
25 def inter(x, y):
26 return (x ∗ w, h − y ∗ h)
27
28 im = Image.new(”RGB”, (w, h), (255, 255, 255))
29 coords = [inter(0.5, 1), inter(0, 0), inter(1, 0)]
30 ImageDraw.Draw(im).polygon(coords, fill=(255, 0, 0))
31 for coords in triangles(n):
32 coords = [inter(∗c) for c in coords]
33 ImageDraw.Draw(im).polygon(coords, fill=(255, 255, 255))
34 im.save(output, ”PNG”)
35
36
37 if name == ’ main ’:
38 draw(int(sys.argv[1]), int(sys.argv[3]), int(sys.argv[3]), sys.argv[2])
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