
Williams College Lecture 26 Brent Heeringa, Bill Jannen

Regular Expressions

Regular expressions are a small programming language over strings that allow us to succinctly and compactly rep-
resent classes of strings. This is particularly useful in pattern matching where we wish to find the occurrence of
patterns in a string. We represent regular expressions as strings of symbols. Some of the symbols are characters in
an alphabet and some serve as operators. For example, the string abc is a regular expression representing the class
of strings containing the single string abc. The regular expression ab∗c represents the class of strings that start with
an a, end with a c and contain 0 or more b characters in between. The star is actually called the Kleene star and its
typical usage is in automata and language theory where, when applied to a set, means take the cartesian product of
the set with itself 0 or more times.

Regular Expressions in Python

The Theory of Computation defines regular expressions in a rigorous mathematical framework. Here we will work
with them more informally and simply treat them as a string of symbols where some symbols act as operators.
We will also focus on regular expressions as they appear in Python. This knowledge should transfer well to other
programming languages.

Let’s start with an example.

Example 1. Suppose we have some text t and a we want to search it to find any pattern that starts with an arbitrary
number of as, followed by a b, followed by an arbitrary number of cs. In regular expression land this is just a*bc*.
So if t=‘‘dog abc cat aabcc bird aac’’ then a*bc* matches t at abc, aabcc, and b.

Escaping

The following characters carry special meaning in regular expressions:

. ˆ $ * + ? { } [] \ | ()

To use one of these characters, we have to escape it with the \ character. For example suppose you wanted to match
the string $100.00. The correct regular expression is \$100\.00 and expressed as a Python string it would be ’
\$100\.00’. Now, suppose that you wanted match the expression \\. Because Python uses the backslash character
as an escape character we must write the string ’\\\\\\\\’’ to escape our escaped string. This is ridiculous, so
Python supports the idea of a raw string literal where escaping does not occur. A raw string can be prefaced with an
r character and we can write r’\\\\’.

Blocks and Dot

One piece of notational convenience provided Python is grouping a set of characters together into a common class.
For example, to match any of the characters abc...xyz we could write [a-z]. There are shorthands for many
groups. For example

• \d matches [0-9],

• \s matches any white space character [\t\n\r\f\v], and

• \w matches any alphanumeric character [a-zA-Z0-9]

We also mention the dot character ., which matches any character except the newline character.

Fall Semester 2016 1 CS 135: Diving into the Deluge of Data

Williams College Lecture 26 Brent Heeringa, Bill Jannen

Greedy Matching of Star

Suppose we have the regular expression do[sgn]*s and the text dogsgs. The matching algorithm matches d
and then o. Then it matches gsgs. It tries to match the final s but fails, so it backs one location and successfully
matches the s.

If one prefers that the algorithm match minimally, then you can qualify the star with a question mark. For
example the regular expression do[sgn]*?s matches the text dogsgs on dogs.

Finding Patterns in Text

Python provides four primary methods to search text for patterns expressed as regular expressions.

match checks if the regular expression matches at the beginning of the text;

search searches all location of the text for the first occurence of a pattern;

findall finds all the occurences of the pattern within the text and returns them as a list;

finditer finds all the locations of of the pattern within the text and returns an iterator.

All the methods except for findall return match objects, which encapsulate information about where the
regular expression matches the given text. Furthermore, the match and search methods only match the first
match. Let’s suppose we are interested in finding the domain name of a bunch of web addresses using the methods
described above.

For example, suppose that we have the following list

www = ["http://math.williams.edu/best-jobs-2015/",
"http://www.williams.edu/registrar",
"http://magazine.williams.edu/2015/spring/study/the-body-as-book/"]

match

The match method will tell us if a pattern occurs at the beginning of a string, in which case it returns a Match
object, or it returns None.

>>> re.match(’http://’, www[0])
<_sre.SRE_Match object; span=(0, 7), match=’http://’>
>>> re.match(’www’, w[0])
>>>

Notice that the Match object encapsulates the beginning and ending positions of the match as well as the match
text.

search

Like match but searches the entire string for a match.

findall

Returns a list of all matching strings in the original text.

finditer

Like search but returns an iterator over all matches in the string. This method returns a Match object.

Fall Semester 2016 2 CS 135: Diving into the Deluge of Data

Williams College Lecture 26 Brent Heeringa, Bill Jannen

Groups

Groups allow you to isolate text inside a larger matched pattern. For example, suppose we wanted to pull our just
the domain name from the list of web addresses we have above.

>>> [re.match("http://(.*?)/",w).group(1) for w in www]
[’math.williams.edu’, ’www.williams.edu’, ’magazine.williams.edu’]

Notice that we used group(1) here—group(0) refers to the entire match—and each subsequent index refers
to the next open parentheses. For example, suppose we wanted to match two things—the subdomain along with the
domain.

>>> [re.match("http://(.*?)\.(.*?)/",w).group(0) for w in www]
[’http://math.williams.edu/’,
’http://www.williams.edu/’,
’http://magazine.williams.edu/’]
>>> [re.match("http://(.*?)\.(.*?)/",w).group(1) for w in www]
[’math’, ’www’, ’magazine’]
>>> [re.match("http://(.*?)\.(.*?)/",w).group(2) for w in www]
[’williams.edu’, ’williams.edu’, ’williams.edu’]
>>>

Other Regular Expression Syntax

Here are some other regular expression syntactical structures along with their semantics (i.e. symbols and their
meaning).

? means the previous character in the regular expression is optional. For example 0?01 matches 001 and 01.
Remember that ? following a * (or a +) means be minimally greedy in the match.

{m} means match exact m copies of the previous character.

{m,n} means match between m and n characters. The final n may be committed (but the comma must remain)
to give a lower bound on the number of characters. One can also append the ? to this (e.g., {3,5}?) to
minimally match the requirement.

ˆ is used to preface part of a pattern that only matches at the start of the text.

$ is used to indicate that a pattern should reach the end of the text.

Fall Semester 2016 3 CS 135: Diving into the Deluge of Data

