
Williams College Lecture 16 Brent Heeringa

Counting in Binary

The polynomial expansion of the decimal number 362 is 3 × 102 + 6 × 101 + 2 × 100. Binary numbers work in
exactly the same way, but with powers of 2 instead of powers of 10. So the number 00100101 = 25+22+20 = 37.

Data and Encodings

Imagine that we write a small amount of textual data to file a file called output.txt using the following Python
code.

1 with open(’output.txt’, ’wt’, encoding=’ASCII’) as fout:
2 print(”De La Soul is Dead”, file=fout,)

If we cat the file in unix we see

$ cat output.txt
De La Soul is Dead

We also know that the data must really just be a sequence of zeros and ones, so we can use the xxd command to see
this underlying representation

$ xxd -b output.txt
0000000: 01000100 01100101 00100000 01001100 01100001 00100000 De La
0000006: 01010011 01101111 01110101 01101100 00100000 01101001 Soul i
000000c: 01110011 00100000 01000100 01100101 01100001 01100100 s Dead
0000012: 00001010 .

Each line tells you the start of the next byte, in hexadecimal, the next 6 bytes, and then the textual interpretation
of the bytes. Bytes are just 8 bits of data. Notice that the first byte is 01000100, which is 26 + 22 = 68. The
first character is “D”. This is not a coincidence. When the “D” was written to disk, it was written using the ASCII
encoding. ASCII stands for American Standard Code for Information Interchange. It encodes the character “D”
using the integer 68. ASCII encodes 128 characters, requiring 7 bits, which you can see in the cart below.

Spring Semester 2015 1 CS 135: Diving into the Deluge of Data

Williams College Lecture 16 Brent Heeringa

ASCII is so 1997

There’s a sociology thesis to be written about ASCII—it encodes the English alphabet, numbers, some punctuation,
and a few out-of-date control characters for your dot matrix printer and terminal like a LINE FEED (ASCII 10) and
BELL (ASCII 7)—but nothing more. It is like saying the world is all of Iowa or any other state in the union. But it
is also pervasive, so we need to deal with it intelligently.

Unicode

Unicode recognizes that the world doesn’t start and end with the English alphabet. It associates an integer (called a
code point) with a platonic character, like the symbol “@” (U+0040, 64 in decimal) or a glyph of an anchor (U+2693,
9875 in decimal). There are 1,114,112 code points overall, in the range from 0 to 10FFFF in hexadecimal.

Encodings

One represents unicode through encodings. For example, one could represent strings of characters as code points
directly. For example, we could just use a standard 32-bit integer to store a code point and then strings would be lists
or arrays of integers. This has several disadvantages:

• Because code points are grouped by locale, most of the bits in single encoded code point will be 0. This seems
wasteful.

• Each character requires 21 bits to represent it. Because the basic unit of addressable memory on a computer
is the byte, which is traditionally 8-bits, we are really working with 24 bits, so even going with a fixed-length,
3-byte encoding seems wasteful.

• Different processors order bytes differently, so a fixed-length encoding is not portable.

UTF-8

UTF-8 stands for Unicode Transformation Format. The 8 means that encodings are done in 8-bit blocks (called
octets by UTF-8). UTF-8 is a variable-length encoding, meaning that depending on which unicode code point it’s
transforming, the corresponding encoding will either be 1,2,3 or 4 bytes long. Here is a schematic of how UTF-8
encodes data.

Bits in code pt First code pt Last code pt # Bytes Byte 1 Byte 2 Byte 3 Byte 4
7 U+0000 U+007F 1 0xxxxxxx
11 U+0080 U+07FF 2 110xxxxx 10xxxxxx
16 U+0800 U+FFFF 3 1110xxxx 10xxxxxx 10xxxxxx
21 U+10000 U+1FFFFF 4 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Here are several advantages of UTF-8.

• UTF-8 is compatible with ASCII because it encodes all ASCII characters as ASCII values;

• UTF-8 can encode all the unicode code points; and

• UTF-8 is self-synchronizing—one can use the byte signatures to both determine the number of bytes and the
order of the bytes.

Spring Semester 2015 2 CS 135: Diving into the Deluge of Data

Williams College Lecture 16 Brent Heeringa

Unicode in Python

The str type in Python is a sequence of unicode code points. Those points are stored compactly, under-the-hood,
so space is not wasted. Given a character, one can grab it’s code point using the ord built-in function.

1 >>> print(” ”.join([str(ord(c)) for c in ’De La Soul is Dead’]))
2 >>> 68 101 32 76 97 32 83 111 117 108 32 105 115 32 68 101 97 100

One can convert a unicode code point into a character using the built-in function chr.

1 >>> codepoints = [int(x) for x in ”68 101 32 76 97 32 83 111 117 108 32 105 115 32 68 101 97 100”.split()]
2 >>> print(””.join([chr(cp) for cp in codepoints]))
3 >>> De La Soul is Dead

One can embed unicode code points in hexadecimal directly in string literals using the
u preface, so

>>> ’\u2603’

represents a picture of a snowman.

Encoding Unicode

Writing strings to files mean encoding them in some format. By default this is UTF-8, but Python supports writing in
many different formats including ASCII. Use the encode method of Python to encode unicode data in a particular
format.

>>> "De La Soul is Dead".encode("utf-8")
b’De La Soul is Dead’

Notice the b prefix means this is binary data—the interpreter is printing those characters to the screen by actually
decoding them (it will do this for any ASCII character) but if we throw on a unicode star (U+2b50) we’ll see some
raw hex.

>>> "De La Soul is Dead\u2b50".encode("utf-8")
b’De La Soul is Dead\xe2\xad\x90’

Notice that in UTF-8, it takes three bytes to encode a star. These bytes in binary are

>>> " ".join(["{0:b}".format(x) for x in "\u2b50".encode("utf-8")])
’11100010 10101101 10010000’

So if we wrote this string out to disk

1 with open(’output2.txt’, ’wt’) as fout:
2 print(”De La Soul is Dead\u2b50”, file=fout, end=””)

we see that the final three bytes are faithfully preserved and xxd does not know how to decode them, so it uses the
period. Here you see firsthand that UTF-8 uses ASCII encodings for ASCII characters and is also variable length.

$ xxd -b output2.txt
0000000: 01000100 01100101 00100000 01001100 01100001 00100000 De La
0000006: 01010011 01101111 01110101 01101100 00100000 01101001 Soul i
000000c: 01110011 00100000 01000100 01100101 01100001 01100100 s Dead
0000012: 11100010 10101101 10010000

Spring Semester 2015 3 CS 135: Diving into the Deluge of Data

