
Williams College Lecture 18 Brent Heeringa, Bill Jannen

Inheritance and Overriding Methods

Without getting too technical, the primary characteristics associated with object-oriented programming are

• inheritance;

• encapsulation; and

• polymorphism

Inheritance is a mechanism by which a class retains the state and behavior of another class. Encapsulation is
about creating a public interface for your class and keeping the internal state sequestered. Polymorphism just means
that a class is free to override a method from its base class and that the correct version of the method always gets
called. In python, there is direct support for inheritance, encapsulation happens via naming conventions, and poly-
morphism happens by default—the most specific version of a method is always called, but one can use super() to
refer to the super class.

Examples

Let’s begin by defining a simple shape class as well as two classes that naturally extend from it—a rectangle class
and a square class.

class Shape:

def area(self):
pass

class Rectangle(Shape):

def init (self, width, height):
self. width = width
self. height = height

def area():
return self. width ∗ self. height

class Square(Rectangle)

def init (self, side):
super(). init (side, side)

Some notes:

• The Shape class is often called an abstract class because it does not define the area method. The purpose
of Shape is to define an interface.

• The Shape class does not have an init method—the initialization method is not required, so if your
class does not need to set up any internal state, you can safely disregard it.

• The Rectangle class inherits or extends the Shape class. We denote inheritance using the parenthesis in
the class definition.

Fall Semester 2016 1 CS 135: Diving into the Deluge of Data



Williams College Lecture 18 Brent Heeringa, Bill Jannen

• The Rectangle class has two instance variables, width and height, which use the underscore con-
vention to say to other programmers: these instance variables are not meant to be accessed by you. Other
languages, like Java and C++ provide language support for this type of access control.

• The Square class extends Rectangle. Its initialization method uses the super() method to ask for the
super class instance. This gives us access to all the methods defined in Rectangle, including its initializa-
tion.

• The Square class inherits the area method, so there’s no need to redefine it.

>>> shape = Rectangle(10,20)
>>> shape.area()
200
>>> shape = Square(10)
>>> shape.area()
100

Let’s begin by creating a chart class. A chart is not specific to any type of chart, so it just has a title. We are
defining this chart for other classes to extend.

1 class Chart:
2
3 def init (self, title):
4 self. title = title
5
6 def title(self):
7 return self. title
8
9 def str (self):

10 return ”{}”.format(self. title)

A histogram is a chart that represents counts over a set of things, which we often call bins. Here is a histogram.

Fall Semester 2016 2 CS 135: Diving into the Deluge of Data



Williams College Lecture 18 Brent Heeringa, Bill Jannen

And here is a histogram class.

1 class Histogram(Chart):
2
3 def init (self, bins, title):
4 self. bins = bins
5 self. counts = [0]∗len(self. bins)
6 super(). init (title)
7
8 def index(self, bin):
9 return self. bins.index(bin)

10
11 def add to bin(self, bin, count):
12 self. counts[self. index(bin)] += count
13
14 def count(self, bin):
15 return self. counts[self. index(bin)]
16
17 def str (self):
18 h = ” ”.join([”{}:{}”.format(x,y) for (x,y) in zip(self. bins, self. counts)])
19 return ”[{}] {}”.format(super(). str (), h)

>>> h = Histogram(["Intro", "Data Structures", "Algorithms", "Operating Systems"], "CS Course Enrollments")
>>> print(h)
[CS Course Enrollments] Intro:0 Data Structures:0 Algorithms:0 Operating Systems:0
>>> h.add_to_bin("Intro", 10)
>>> print(h)
[CS Course Enrollments] Intro:10 Data Structures:0 Algorithms:0 Operating Systems:0
>>> h.count("Intro")
10
>>> h.add_to_bin("Operating Systems", 30)
>>> print(h)
[CS Course Enrollments] Intro:10 Data Structures:0 Algorithms:0 Operating Systems:30

Static Methods

Static methods are functions associated with the class that do no rely on instance variables but still logically belong
to the class. For example, our Histogram class might have a function percentage that takes a count and a total
and returns the percentage—it’s functionality that someone using a Histogram might want, but it doesn’t rely
on the instance variables. In Python, you use a decorator to indicate a static method with the @staticmethod
syntax. Static methods don’t take self parameters, so the methods look as follows:

1 class Histogram(Chart):
2
3 @staticmethod
4 def percentage(count, total):
5 return count / total

Fall Semester 2016 3 CS 135: Diving into the Deluge of Data


