
Williams College Lecture 10 Brent Heeringa, Bill Jannen

Representing Numbers

We are all familiar with representing numbers in decimal (base-10). We can also represent numbers in other bases.
For example, it is very common in computer science to use binary (base-2). Using octal (base-8) and hexadecimal
(base-16) is also common. For hexadecimal, we use digits 0–9 and letters A–F where A = 10 and F = 16.

In decimal, we can represent 10 different numbers using a single digit (0–9). If we add another digit, we can
represent 100 different numbers (00–99). Adding a third digit gives us 1000 different numbers (000–999). With
n ≥ 1 digits, we can represent 10n unique numbers.

Binary numbers work in exactly the same way, but with powers of 2 instead of powers of 10: each binary digit
can only represent two values.

If we want to represent a number n in base b, we will need at least logb(n)
1 digits. Think about why this might

be the case.

Counting.

Let’s think about counting in decimal. We start with the lowest natural number (0), and we count by incrementing
(adding 1). We always increment the least significant digit until it reaches its maximum value (9).

When digit exceeds its maximum value, we reset that digit to the lowest value, and carry—increment the next-
least signifcant digit. This gives us: 00, 01, 02, 03, . . ., 09, 10, 11, . . . 19, 20, 21, . . ., 98, 99.

For any base b, the lowest value a digit can have is 0 and the maximum value of any digit is b − 1. Thus, with
one binary digit, we can represent two numbers: 0 and 1. With two digits, we can represent four numbers: 00, 01,
10, 11. With three digits, eight numbers, and with n ≥ 1 digits, 2n numbers.

Counting in binary follows the same principles as counting in decimal. We always increment the least significant
digit, and when any digit overflows, we reset that digit and carry (increment the next-least significant digit). If we
want to count the first 8 numbers in binary (from decimal 0 to decimal 7), we would get: 000, 001, 010, 011, 100,
101, 110, 111.

Converting from Decimal to Binary

To convert a decimal number to a binary number, it’s useful to think about polynomial expansions. For example, 23
is

(2× 101) + (3× 100).

Because 23 = 10111 in binary, the binary polynomial expansion is

(1× 24) + (0× 23) + (1× 22) + (1× 21) + (1× 20).

• Notice that a number is odd if and only if the last binary bit is a 1 so checking for even/odd values tells us the
last bit of the binary representation.

• Now imagine dividing the decimal number by 2 using integer division and think about how this affects the
the polynomial expansion. It essentially chops off the last bit and shifts the binary number to the right by one
place.

• If this new number is even or odd tells us what the next-to-last bit of the binary representation is. We can
repeat this!

Practice

Question 1. Given an integer d in base-10, write a function that represents d in binary as a list of 0s and 1s.

1technically there are blogb(n)c+ 1 digits

Fall Semester 2016 1 CS 135: Diving into the Deluge of Data



Williams College Lecture 10 Brent Heeringa, Bill Jannen

def num to binary(num):
”””
return the binary representation of num as a list of bits (i.e., the integers 0 and 1)
”””
if num == 0:

return [0]

bits = []
while num > 0:

if num % 2 == 0 :
bits.append(0)

else :
bits.append(1)

num = num // 2
bits.reverse()
return bits

How would we generalize this function to other bases?

1 def num to baseb(num, b) :
2 ”””
3 return the b−ary representation of num as a list of base−b integers
4 ”””
5 if num == 0 :
6 return [0]
7
8 digits = []
9 while num > 0:

10 digits.append(num % b)
11 num = num // b
12 digits.reverse()
13 return digits

These functions work well for most inputs but it prints the minimum number of digits needed to display the
number. How would we modify the code to pad our strings to be a fixed width?

Question 2. Can you think of any inputs that the code does not handle? What about small or large values of n?

1 def num to padded base(num, b, width) :
2 digits = []
3 while num > 0:
4 digits.append(num % b)
5 num = num // b
6
7 digits.extend([0]∗(width − len(digits)))
8 digits.reverse()
9 return digits

Let’s use this padded function to iterate through the first 8 binary numbers:

1 import sys
2 from math import log, ceil

Fall Semester 2016 2 CS 135: Diving into the Deluge of Data



Williams College Lecture 10 Brent Heeringa, Bill Jannen

3
4 n = int(sys.argv[1])
5 b = int(sys.argv[2])
6 width = ceil(log(n−1, b))
7 for i in range(n):
8 print(num to padded base(i, b, width))

$ python3 printbinary.py 8 2
[0, 0, 0]
[0, 0, 1]
[0, 1, 0]
[0, 1, 1]
[1, 0, 0]
[1, 0, 1]
[1, 1, 0]
[1, 1, 1]

Fall Semester 2016 3 CS 135: Diving into the Deluge of Data


