
Williams College Lecture 3 Brent Heeringa, Bill Jannen

REPL

The python interpreter, when run in interpreter mode, yields a read-evaluate-print loop known as a REPL (pro-
nounced REP-UL).

Numbers

Here is some python code involving integers (type: int) and real numbers (type: float). You can add (+), subtract
(-), multiply (*), divide (/), integer-divide (//), exponentiate (**), and calculate the remainder (%).

• Python follows the PEMDAS order of operations, so order and groupings matter!

1 >>> 1 + 1
2 2
3 >>> 2 − 1
4 1
5 >>> 3 ∗ 2
6 6
7 >>> 4 / 3
8 1.3333333333333333
9 >>> 4 / 3 + 1

10 2.333333333333333
11 >>> 4 / (3 + 1)
12 1.0
13 >>> 4 // 3
14 1
15 >>> 8 // 3
16 2
17 >>> 3 / 4
18 0.75
19 >>> 3 // 4
20 0
21 >>> 2∗∗4
22 16
23 >>> 5 % 4
24 1
25 >>> 9 % 5
26 4
27 >>> type(20)
28 <class ’int’>
29 >>> type(0.75)
30 <class ’float’>
31 >>> type(1 + 1)
32 <class ’int’>
33 >>> type(1.0 + 1)
34 <class ’float’>
35 >>> int(7.5)
36 7

Every object in Python has a type. Two numeric types are int and float, and numbers can be converted to either
type the builtin functions int() or float().

Fall Semester 2016 1 CS 135: Diving into the Deluge of Data

Williams College Lecture 3 Brent Heeringa, Bill Jannen

Variables

In python, a variable is a name that refers to a value. Descriptive variable names are a useful way to document our
code, so it is best to choose names that hint at a variable’s purpose. This is part of good programing style. There are
also some requirements imposed by the language. Variables:

• can contain letters (upper or lowercase), numbers, and ’s

• cannot start with a number

• cannot be a Python reserved keyword

Here is some code that uses variables (assigns names to values), sometimes correctly, sometimes not. Whenever
we make an error in the interpreter, it outputs a message that describes the nature of our mistake. A syntax error
occurs when we provide code that is not valid according to the rules of the language. In otherwords, our code is
malformed. (We will see other types of errors in the future.)

1 >>> my name = ”Bill”
2 >>> 50cent = ”Curtis Jackson”
3 File ”<stdin>”, line 1
4 50cent = ”Curtis Jackson”
5 ˆ
6 SyntaxError: invalid syntax
7 >>> fifty cent = ”in the club”
8 >>> class = ”135”
9 File ”<stdin>”, line 1

10 class = ”135”
11 ˆ
12 SyntaxError: invalid syntax
13 >>> cs135 = ”class”
14 >>> cs135
15 ’class’
16 >>> Falsey = False
17 >>> Falsey
18 False
19 >>> False = Falsey
20 File ”<stdin>”, line 1
21 SyntaxError: can’t assign to keyword
22 >>> false = False
23 >>> false
24 False

So we see that we can use keywords in our variable names, but our variable name cannot be just a keyword. We
also see that case matters. Some keywords have a value, like True and False, and can therefore be assigned to a
variable. Others, like class have a specific meaning in the language, but not a value.

Fall Semester 2016 2 CS 135: Diving into the Deluge of Data

Williams College Lecture 3 Brent Heeringa, Bill Jannen

Strings

A Python string literal can be formed by enclosing text in a pair of apostrophes like ’this’ or a pair of quotes like
”this”. Unlike parentheses, which have a notion of a “left” and a “right”, these symbols do not. So we must construct
strings in a way that has no ambiguity. If we want to use only apostrophes in our text, we can enclose our text in
quotes. If we want to use only quotes, we can enclose our text in apostrophes. If we want a mix, we must use
escaping, which is done with the backslash (\).

We can also use the escape character to create other special meanings, including a newline (\n), a tab (\t), or a
literal backslash (\\). Why do we need to escape a \?

1 >>> x = ”Brent’s sister’s husband’s brother−in−law is a great guy.”
2 >>> x
3 ”Brent’s sister’s husband’s brother−in−law is a great guy.”
4 >>> y = ’Brent says, ”Good thing my brother−in−law is an only child.”’
5 >>> y
6 ’Brent says, ”Good thing my brother−in−law is an only child.”’
7 >>> z = x + ” ” + y
8 >>> z
9 ’Brent\’s sister\’s husband\’s brother−in−law is a great guy. Brent says, ”Good thing my brother−in−law is an only child.”’

10 >>> print(x)
11 Brent’s sister’s husband’s brother−in−law is a great guy.
12 >>> print(y)
13 Brent says, ”Good thing my brother−in−law is an only child.”
14 >>> print(z)
15 Brent’s sister’s husband’s brother−in−law is a great guy. Brent says, ”Good thing my brother−in−law is an only child.”
16 >>> a = ”a newline\ncharacter”
17 >>> print(a)
18 a newline
19 character
20 >>> a = r’a newline\ncharacter’
21 >>> a
22 ’a newline\\ncharacter’
23 >>> print(a)
24 a newline\ncharacter

Consider the following interaction on the Python interpreter. What is x?

>>> print(x)
She said, "Brent’s favorite character is \n."
He said, "I know."

Fall Semester 2016 3 CS 135: Diving into the Deluge of Data

Williams College Lecture 3 Brent Heeringa, Bill Jannen

Python

Let’s write a program called sum.py that takes two arguments from the command line and prints out their sum.

1 import sys
2
3 x = sys.argv[1]
4 y = sys.argv[2]
5
6 print(”The sum of ” + x + ” and ” + y + ” is ” + (x+y))

First some explanation. The import command tells Python to include a bundle of code, called a module, in
our program. Importing a module gives us access the variables and functions it defines. The module sys gives us
access to a variable called argv, which is a vector of strings that appear on the command line. sys.argv[0] is
the name of the script. sys.argv[1] is the first argument, sys.argv[2] is the second argument, and so on.
Let’s run this script in script mode.

1 $ python3 sum.py 5 6
2 The sum of 5 and 6 is 56

Um, that’s not right. What’s wrong? The arguments are strings of characters, not numbers.

1 import sys
2
3 x = int(sys.argv[1])
4 y = int(sys.argv[2])
5
6 print(”The sum of ” + str(x) + ” and ” + str(y) + ” is ” + str(x+y))

In the code above, we convert a valid string into an integer using int(), and we convert that interger back into a
string using str(). What would happen if we didn’t convert x and y back to strings in the print() command?
What would happen if we passed arguments to our script that were not integers?

Fall Semester 2016 4 CS 135: Diving into the Deluge of Data

