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Figure 1: The interactive alchemy BKT explainable on the left, with a cropped view of the static explainable on the right.

ABSTRACT

As machine intelligence is increasingly incorporated into educa-
tional technologies, it becomes imperative for instructors and stu-
dents to understand the potential flaws of the algorithms on which
their systems rely. This paper describes the design and implementa-
tion of an interactive post-hoc explanation of the Bayesian Knowl-
edge Tracing algorithm which is implemented in learning analytics
systems used across the United States. After a user-centered design
process to smooth out interaction design difficulties, we ran a con-
trolled experiment to evaluate whether the interactive or static ver-
sion of the explainable led to increased learning. Our results reveal
that learning about an algorithm through an explainable depends
on users’ educational background. For other contexts, designers
of post-hoc explainables must consider their users’ educational
background to best determine how to empower more informed
decision-making with Al-enhanced systems.
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1 INTRODUCTION

In order for users to make informed, ethical decisions with the
assistance of the algorithmic systems on which they rely, they must
understand the algorithm’s processes and therefore its potential
flaws and biases [21]. The same is true with educational technology,
which is increasingly being used in the classroom to make decisions,
such as who is at risk of dropping out and on which topics to focus
on that day [3]. This concern focusing on machine models’ ability
to be interpreted is seated within the machine learning literature as
transparency and interpretability, and the approach to provide users
with an understanding of their models is referred to as post-hoc
explanations or explainable AI (xAl) [17].

In this paper, we investigate the development of two versions
of a post-hoc explanation for Bayesian Knowledge Tracing (BKT),
a complex algorithm used in universities across the United States.
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We used a qualitative user-centered design process to identify user
needs and important factors to consider in building post-hoc expla-
nations for complex algorithmic processes, and then quantitatively
evaluated two versions of our explainable for learning.

2 RELATED WORK

Increasing numbers of systems leverage artificial intelligence (AI)
algorithms into critical decision-making processes, such as crim-
inal justice [2]. From within education, a growing movement to-
ward student modeling, personalized learning environments, and
learning analytics systems also leads to growing reliance on com-
plex computational processes for decision-making in the classroom.
Other research has uncovered that if users are not provided with
an interpretable algorithm, they will invent their own “algorithmic
imaginaries" to explain the model output they observe, regardless
of its accuracy [5]. The increasing reliance on algorithms to assist in
decisions has lead to increased interest in the fairness, accountabil-
ity, and transparency of these algorithms from within the artificial
intelligence community [15], [21], [11].

2.1 Explainables

Model interpretability is pointed to as a potential remedy for in-
creasing transparency of complex computational models, but it is as
yet unknown how to achieve the required level of interpretability
to achieve the desired impact on user understanding and decision-
making. Lipton (2018) introduces a desiderata of interpretability
research, in which post-hoc interpretability is one property pro-
gressing toward the goals of trust, causality, transferability, and
informativeness, as well as fair and ethical decision-making in
machine learning models [21]. Of the four types of post-hoc in-
terpretability detailed by Lipton (2018), explainables typically fall
under the “Explanation by Example" category.

Based on this explanation by example category, the machine
learning and visualization communities have begun creating what
they call “explainables" to teach the concepts of particular algo-
rithms. Explainables “that explain how Al techniques work using
visualizations,' to quote a recent workshop call for Visualization
of AI!, often take the form of interactive graphs or visualizations
interspersed with paragraphs of explanatory text. However, this
concept is not unique to machine learning nor the information
visualization community, as very similar approaches can be found
from within educational psychology under the name inquiry-based
learning. In [12], inquiry-based learning is motivated as a require-
ment for understanding scientific inquiry and as a means to acquire,
clarify, and apply an understanding of science concepts. The au-
thors describe their collection of interactive learning technologies
that provide interactive geosciences visualizations for novices to
explore various atmospheric and meteorological sciences topics.
These visualizations were integrated into a classroom curriculum
and progressed from simple to complex activities and from specific
instructions to open-ended tasks. Where a systemic application of
inquiry-based learning often contains this scaffolding from the sim-
ple to the complex, explainables often mimic this process through
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a shorter process the community describes as going “up and down
the ladder of abstraction” 2.

From within the machine learning community, discussion of how
researchers might generate a rigorous science of interpretability
focuses on methods with which to evaluate the interpretability
of different models. This includes pointing out scientific under-
standing, safety, ethics, mismatch objectives, and multi-objective
trade-offs as incompleteness in models that produce unquantified
bias [11]. While the authors introduce a sample approach for un-
derstanding user expertise via the basic units of the explanation
or cognitive chunks [22], they largely miss the modern literature
on teaching and learning. Simply put, we can imagine the user as
a learner and the post-hoc interpretation as the learning content,
and this would allow xAI researchers to leverage the entire body of
educational psychology and learning science research to achieve
their goals of post-hoc explanations of complex algorithms.

While there is much research on measuring and evaluating what
it means to know a concept from within the learning science field,
this approach does not appear present in the work on explainables
and algorithmic transparency via post-hoc explanation. A review
of the example explainables listed in the IEEE VIS Workshop on
Visualization for Al Explainability!, for example, shows a series of
explanatory text interspersed with interactive visualizations, but no
accompanying evaluations in the research literature. In short, the
explainables community does not yet appear to empirically evaluate
whether their explainables successfully explain the concepts the
designers had intended. And in many cases, it is not clear how the
explainable designers identified the concepts necessary to explain.

2.2 Effects of Interpretability on Actions

Assuming the desired level of interpretability is achieved, it is also
unknown how that interpretability impacts user behavior with algo-
rithmically enhanced systems. Discussions within the ML commu-
nity suggest that once a model increases its transparency, whether
through post-hoc explanations or other techniques, this will lead to
more realistic trust in ML systems and eventually to fairer decisions
made with the assistance of ML models [11].

However, research in the learning sciences suggests that in-
creased transparency in grading can lead to student dissatisfaction
and distrust [17, 18]. When comparing three levels of system trans-
parency in a high-stakes essay peer assessment context within an
online learning environment, individuals who received their ex-
pected grade reported that their system trust was unaffected by the
three transparency levels [18]. Individuals who received a lower
grade on their essay than they expected reported reduced system
trust, unless the grading algorithm was explained at the medium
transparency level. High levels of system transparency, including
a paragraph explaining how raw grading scores were algorithmi-
cally adjusted, yielded system trust indistinguishable from students
experiencing the low transparency condition.

Other shifts in attitudes in fairness and trust are reported in
additional self-report designs, as in [20]. The author used a social
psychological self-report approach to measure perceived fairness,

2http://worrydream.com/LadderOfAbstraction



trust, and emotional response when a “decision-maker” is algorith-
mic or human [20]. Results suggest that algorithmic and human-
made decisions were equally fair and trustworthy for mechanical
tasks, but for human-based tasks, algorithmic decisions were per-
ceived as less fair and trustworthy. This experiment was performed
in an online environment using self-report measures, and while
it is an informative first step towards understanding user percep-
tions towards algorithms that influence decision-making, next steps
involve measuring how these perceptions influence user behavior.
This prior work shows that user trust, fairness, and positivity
are measurably influenced by perceptions of algorithms, but it is
unknown how well the users must understand the algorithm to
achieve these impacts on perceptions. In this paper, we begin to
investigate how explainable design can impact user understanding,
using Bayesian Knowledge Tracing as our example algorithm.

2.3 Interactive Learning Experiences

Part of the intuition behind explainable design is that an interactive
experience is more engaging than a static learning environment and
allows for hypothesis testing 3. This intuition is supported by edu-
cation research literature, such as in Koedinger et al. (2015) which
showed that interactive activities with feedback in an online course
lead to students learning one standard deviation more than students
using just informational assets like videos and text [19]. This work
also aligns with a growing movement within education research
showing that active learning activities increases student learning
in science, engineering, and mathematics fields [14]. And while it
is understood that interactive elements must be interspersed with
passive learning elements, it is not yet confirmed for explainables
that this is necessarily the case.

2.4 Bayesian Knowledge Tracing

BKT or Bayesian Knowledge Tracing was introduced in 1995 by
Corbett & Anderson as a means to model students’ knowledge as
a latent variable within technologically enhanced learning (TEL)
environments [8]. The TEL maintains an estimate of the proba-
bility that the student has learned a particular set of skills based
on their performance on problems, which is statistically equiva-
lent to a 2-node dynamic Bayesian network. The development of
BKT allowed for more accurate student modeling and more person-
alized learning opportunities for students. Decades of additional
research on learner modeling followed, resulting in a variety of im-
provements to the BKT approach, including estimating individual
parameters instead of skill-based parameters [26] and new ways to
estimate the initial parameters [9] to much predictive success. BKT
is used across the United States in TELs such as the Open Analytics
Research Service [3], among others [16].

BKT predicts whether a student has mastered a skill, or not yet
mastered it (either due to lack of data, or repeated failed attempts).
This process requires a mapping from problems to skills. Mastery
predictions require four parameters to calculate, with a probability
of 0.95 typically being used as a cut-off to qualify as skill mastery:

(1) P(Lo): the probability the student already knew the skill
(2) P(T): the probability that the student learned after a learning
opportunity

3https://blog.ncase.me/explorable-explanations/

(3) P(G): the probability the student guessed correctly on an
unknown skill

(4) P(S): the probability the student made a mistake and slipped
on a known skill

One copy of each of the above parameters are used per skill.
These parameters are usually fit through a variety of methods [9],
are typically shared across an entire class of students, and are of-
ten not updated throughout the learning exercises. As a student
proceeds through a lesson and answers problems correctly or in-
correctly, BKT updates its estimates of predictions of mastery via
the formulae below. First, the system sets the first probability to
the initial probability that the student knew the skill a priori in
Equation 1. Then, the conditional probability is computed using
either Equation 2 or 3 depending on whether the student answered
the problem correctly. This conditional probability is then used to
update the probability of skill mastery as in Equation 4. BKT is a
sufficiently complex algorithm as to not be easily understood, but
it is also sufficiently approachable to explain as the parameters and
their interaction are all known.

P(L1) = P(Ly) o))
P(Lp-1) * (1= P(S))
P(Lp-1) * (1 = P(S)) + (1 = P(Lp-1)) * Pg))

P(Lp—1|obsy = corr) =

P(Ln-1) * P(S)
P(Lp-1) * P(S) + (1 = P(Lp-1)) (1 = 1(’§)G))

P(Lp—1|obsy, = incorr) =

P(Lnlobsn) = P(Lp-1lobsn) + (1 = P(Lp-1|obsp)) * P(T)) ~ (4)

3 DESIGNING AN AI EXPLAINABLE

The main goals of our explainable were to render the artificial
intelligence algorithm approachable to non computer scientists in
the form of a playful experience. Instructors often do not have extra
time to dedicate to system understanding, and so one of the main
constraints on our prototype was that the designs be engaging and
brief. We are working toward connecting one of these explainables
to an existing BKT learning system, in order to provide algorithmic
understanding to instructors and students of that system.

3.1 User-Centered Design Process for the
Initial Explainable

The explainable design selected through a user-centered design
process uses an alchemy metaphor to visualize the changes in pa-
rameters of the model and the predicted mastery levels. Figure 1
is a single screen from the final Interactive Alchemy explainable.
In this tutorial, users interacted with buttons and watched the an-
imations accompanying the descriptions. Vials representing the
four parameters would fill a beaker representing the probability the
student had mastered a skill. Much of the BKT algorithm was illus-
trated through the animations of the liquid rising and falling in the
vials. This explainable was implemented in HTML and Javascript,
resulting in approximately 20 unique screens.

This design was selected over a few other brainstormed ideas
due to its in-depth explanations of additional concepts. In particular,
predicted mastery was represented as a liquid in a beaker, leading
to the liquid rising whether the hypothetical student answered
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Figure 2: A low-fidelity prototype of the Alchemy explain-
able done with paper and markers.

a question correctly or incorrectly. This animation illustrates the
BKT concept that every problem is practice in a skill, leading to an
increased likelihood of mastery within that skill, regardless of the
correctness of the student response. Our research team applied a
user-centered design process to develop our initial interactive BKT
explainable through the following steps:

Brainstorming & Sketching. Designs were initialized through
brainstorming where the goal was to sketch at least nine ideas. Next,
individual ideas were explained, refined, and edited in a group
brainstorming process.

Low-fidelity Prototyping. Ideas from the brainstorming ses-
sions were narrowed down to three and construction of low-fidelity
paper prototypes began, as shown in Figure 2. After several itera-
tions of prototyping within the research team, the paper prototypes
were pilot-tested on fellow research assistants outside of the re-
search team.

User Pilot Testing,. Participants at this stage all had backgrounds
in computer science at the undergraduate level, but none had expe-
rience with BKT or xAlI Each prototype was tested on two different
users for each iteration following the process detailed in [23]. Users
were instructed to think aloud and explain any difficulty in use or
understanding that they encountered while interacting with the
prototypes. They were also asked a series of knowledge check ques-
tions at the end of each session in order to ensure the prototypes
were successful in teaching some BKT concepts.

Revisions & High-fidelity Prototypes. The prototypes were
iteratively adjusted to address user feedback. After the third itera-
tion, paper prototypes were converted into high-fidelity prototypes
using click-through prototyping software.

Implementing the Designs. Two of the three designs were
implemented at this stage, including the alchemy explainable. We
then proceeded to run user tests with participants external to our
department.

Participant Recruitment. With approval from our Institutional
Review Board, we recruited eight participants from a small rural
town in the northeastern United States via Craigslist, paper flyers,

and the local college’s online message board. With the consent of
each participant, we audio recorded each 30-minute session.

Providing Task Context. After the first user study, participants
were first presented with a brief lesson in a TEL, followed by an
interactive quiz. The quiz provided immediate feedback on the
participants’ responses to questions about boxplots, and the final
screen displayed a sample dashboard using BKT to predict the
participants’ mastery of the two boxplot skills. Participants were
assured that their statistics skills were not evaluated, and were
encouraged to guess if they found anything difficult, as the purpose
was to demonstrate a context in which BKT is used so they could
better understand the purpose of the explainables.

Usability Testing. We showed each participant two explain-
ables in a thirty minute session, rotating through the six possible
combinations to vary which explainables were shown, and which
was shown first. A user test for one explainable typically lasted
10-15 minutes. While the feedback on the second shown explain-
able would be biased from the participants’ exposure to the first
explainable, we chose to leverage this opportunity to gather com-
parative feedback from users on multiple designs, similar to how
prototype speed dating is leveraged in [10]. Once context for the
BKT system was completed, participants were shown the first of
two explainables and prompted to think aloud [24].

Semi-Structured Interview. After completing the explainable,
we performed a semi-structured interview, asking for the partici-
pant’s opinions on the format and content before a series of ques-
tions evaluating their knowledge retention. These knowledge reten-
tion questions were inspired by Bloom’s Taxonomy [1] to ensure
investigation into varying depths of understanding.

The above Usability Testing and Semi-Structured Interview pro-
cesses were repeated a second time for a second explainable, ask-
ing for opinions and testing knowledge retention. Finally, partici-
pants were asked to compare the two explainables they saw, noting
strengths, weaknesses, and preferences similar to [10].

Affinity Diagramming. When user testing was complete, a
researcher listened to the audio recordings of the interviews and
transcribed comments about the explainables resulting in approxi-
mately 90 of these raw comments. When all user comments were
transcribed in this manner, an affinity diagramming process was
followed as described in [4]. In user experience design contexts,
the affinity diagram represents the scope of the user problem in
performing a particular task and can be used throughout the user-
centered design process to identify user needs in system designs.

We organized the quotes with a bottom-up approach by sort-
ing them according to similar concepts. For example, we grouped
notes that complained about an explainable having too many details
together. We also gave each group a name that summarized the
contents. A group with notes that expressed confusion surrounding
the metaphor in an explainable was named “I don’t understand the
metaphor" We then sorted these groups by similarity into over-
arching categories. These categories form the major themes and
issues users encountered while interacting with our explainables.
Our final affinity diagram from this process is shown in Figure 3.

We identified three overarching categories through the affinity
diagramming process which are shown alongside their associated
themes in Table 1. The “Consider Individual Differences” section of
our affinity diagram contained often-conflicting comments, which



Table 1: Affinity Diagramming Topics

Category Themes

Consider Individual Differences  “The tutorial taught me something”, “I don’t understand why we’re doing this", “I don’t under-

Y

G

stand the metaphor", “The metaphor worked", “The second tutorial confused me", “The second

wow

tutorial enlightened me", “I don’t know where my knowledge came from"

Refine the Level of Detail

“The details were helpful”, “There was noticeable cognitive load", “Too many details make the

tutorial overwhelming", “Too few details leave more questions"

Usability Design Principles

"

“It looks pretty and understandable’, “The graphics were helpful", “The graphics were not

"

helpful”, “There are a few design changes I would make", “I expected change but didn’t get
any", “Too many buttons makes it easy to mis-click”, “Make the text readable", “Brief text is not

"o

intimidating", “Technical terms are intimidating"

Figure 3: Photograph of the final affinity diagram with user
comments grouped into themes via a bottom-up process.

we believe stem from each individual participant’s background
and personal preferences. These comments covered topics such
as comprehension of the tutorial materials. The “Refine the Level
of Detail” category of our affinity diagram contained comments
on satisfaction with the level of detail in our tutorials. “Usability
Design Principles” contained comments about the appearance and
function of our tutorials, which are typical details unearthed in
usability tests.

3.2 Static and Interactive Explainables

After developing two explainables through this user-centered de-
sign process, our research team decided to focus on just one of the
designs to better understand how different aspects of the design
impacts user understanding of the algorithm. For this stage of the
process, we selected the interactive alchemy design, and refined
it according to user feedback from the previous phase as shown
in Figure 1. We also implemented additional interaction features,
such as allowing the user to see what happens to the algorithm
output when a hypothetical students answers questions incorrectly
or correctly, as well an opportunity to answer a multiple choice
question and receive feedback.

We then produced an equivalent alchemy explainable with all of
the interactive elements removed, which we call the static alchemy

explainable. The interactive elements were replaced by a few sen-
tences of explanatory text to ensure that users still covered the same
concepts. Both of these new explainables were built using Javascript
and Idyll, and proceeding through the content was maneuvered
by scrolling down on the explainable. With a static and interac-
tive version of our explainable, we could then examine whether an
interactive explainable leads to increased learning over the static
explainable, as the education research would suggest.

4 METHODS

We constructed a controlled experiment using Amazon Mechanical
Turk. Participants were compensated $5.00, as we estimated the
experiment to require 20-30 minutes of time. In total, we recruited
117 participants from North America, although 29 of these partici-
pants were dropped due to incomplete questionnaires, or answering
one of two attention check questions incorrectly. 40 participants
were randomly assigned to the interactive condition, and 48 to the
static condition. 36% of participants self-identifed as female. 80%
identified as white, 8% as black or African American, 6% as Asian,
5% as Latinx. 50% of participants had used an online platform to
take a course previously.

4.1 Pretest

Participants first completed a pretest which consisted of introduc-
tory probability questions in order to assess quantitative familiarity.
This section included questions such as “Which of the following
cannot be a probability?” (with -0.002, and 1.01 being the correct
answers), and other questions related to coin flipping and dice
probabilities.

4.2 Posttest

After the pretest, participants were randomly shown one of the
two alchemy explainables, and this was followed by a posttest. The
posttest used Bloom’s Taxonomy as a guide for the complexity of
the questions about BKT. Participants were asked basic compre-
hension questions, like the definition of p(init) and p(transit), but
also more complex questions exploring the relationship between
parameters such as “Sam makes spelling errors very frequently,
rarely guesses at unknown words, and has reviewed the words very
extensively beforehand. Given that three questions were correctly
answered, it is very likely that Sam has mastered the vocabulary
words.” These pre- and post-test questions were graded to produce



a percentage score for each participant so learning could be mea-
sured. A sampling of the more complex questions from the posttest
are included below:

(1) From the equations above, which one do you use to update
the mastery when an observation is correct?

(2) Alex rarely makes arithmetic mistakes, rarely guesses, and
has moderately reviewed algebra before. Given that three
questions were correctly answered, how likely is it that Alex
has mastered algebra?

(3) Sam makes spelling errors very frequently, rarely guesses
at unknown words, and has reviewed the words very exten-
sively beforehand. Given that three questions were correctly
answered, it is very likely that Sam has mastered the vocab-
ulary words.

(4) Morgan always guesses correctly, never makes mistakes, has
an init probability of 0.6, and a transit probability of 1. What
is the probability that Morgan has mastered the skill?

(5) Given everything else equal, if student A has a higher prob-
ability of guessing correctly than student B, whose mastery
will grow more when they both answer a question correctly?

(6) Taylor rarely makes mistakes, rarely guesses, and reviewed
the material very extensively beforehand. The student gets
the first five questions wrong and the next four-in-a-row
correct. BKT says that it is very unlikely for Taylor to have
mastered the skill. Do you think this is a reasonable conclu-
sion? Why/why not?

(7) What are some of the strengths of Bayesian Knowledge Trac-
ing? What are some of its weaknesses?

(8) How fair or unfair is it for learners that the Bayesian Knowl-
edge Tracing determines their skill mastery? Briefly explain
the rating you give.

(9) How much do you trust that Bayesian Knowledge Tracing
makes good-quality evaluations of a learner’s learning pro-
cess? Briefly explain the rating you give.

Partway through the above posttest comprehension items we
include a two part attention check question adapted from [13]. The
posttest was followed with a demographic post-questionnaire.

4.3 Data Analysis

Data was examined for normality, and we constructed a linear
regression of pretest to posttest score for the entire population
and calculated the residual for each participant. This residual score
represents how much higher or lower the individual is relative
to the regression line. In other words, it represents how much
better or worse that participant performed than expected. This
measure (or an Analysis of Covariance, controlling for pretest score)
is preferable to computing learning by subtracting the pretest from
the posttest, as the subtraction approach is prone to a ceiling effect.
Someone who scores perfectly on the pretest cannot perform even
better on the posttest, and a residual reflects this. For the purposes
of this analysis “learning” is this pre-to-posttest residual score.

4.4 Results

We performed an Analysis of Variance statistical test, with condition
as the independent variable and learning residual as the dependent
variable. Initial analyses revealed no significant results of condition

Table 2: Learning by Condition and Education Level

n  Education Condition Learning Standard Error
highschool  interactive 1.86 4.99
5  highschool static 12.00 5.47
14 some college interactive -8.25 3.27
9  some college static -3.46 4.07
4  associate interactive -1.88 6.11
6  associate static 3.95 4.99
11  bachelors interactive  0.83 3.69
24  bachelors static 0.66 2.50
5  masters interactive -1.70 5.47
4  masters static 10.73 6.11

on learning. However, when Education Level is included as an
interaction effect with condition, we find that the condition factor
is significant, F(1, 9) = 4.71, p = 0.03, R? = 0.17 with mean learning
residuals reported in Table 2. Table 2 shows high variability in
learning between conditions based on education level. In particular,
the two most extreme numbers are in the positive direction, and
both for the static explainable condition. This is quite likely due to
a small sample size.

4.5 Discussion

In this experiment, our results ran counter to our hypotheses - the
static explainable led to increased learning, but only when an inter-
action with education level was incorporated into the model. These
results stress the importance of understanding the background of
the user for which the explainable is designed. Different types of
prior background may imply different approaches to designing an
explainable.

The main limitation of this work is the relatively small sample
size, relative to the 5 education levels. A larger sample or more
targeted recruitment strategy is necessary for future work exploring
user learning from Al explainables.

4.5.1 Future Work. There is a considerable amount of research
on using interactive tutorials to teach content. However, work on
explanations for particular artificial intelligence algorithms is quite
new, and as such there are numerous exciting potential avenues
for future work in this area. In particular, teaching a particular
complex algorithm is so new, it is not yet known exactly how much
understanding of an algorithm is necessary for impacting user
decision-making. Cognitive Task Analysis is one possible method
that can help systematically identify the knowledge components
experts require to complete a task [7]. This will be informative
for identifying the skills and concepts we want users to gain from
interacting with an explainable. If an expert needs a particular
concept for estimating whether the output of a machine learning
model is flawed or biased, then that is a skill our explainables should
teach.

Additional future work includes developing a BKT explainable
with these principles incorporated. The first step involves perform-
ing expert Cognitive Task Analysis to identify the knowledge com-
ponents that BKT experts use when making decisions with the



assistance of BKT. A user-centered design process, similar to that
described in this article, will be followed to adapt our explainables
to target various levels of BKT understanding via a variety of flexi-
ble modules. Evaluation of the explainables will involve a pretest
and posttest in order to investigate whether the users successfully
learned the targeted concepts. Questionnaires will also be used to
determine how the explainables change user self-reported trust
and fairness perceptions of BKT. Final evaluation will examine how
user decision-making in the classroom is impacted by an increased
understanding of BKT. Further future work includes applying the
above process to creating additional explainables for different algo-
rithms, such as deep knowledge tracing [25].

5 CONCLUSION

In this article we presented results from our first investigation of
designing explanations by example for BKT, a complex algorithm
that predicts student knowledge within technologically enhanced
learning environments. Through applying user-centered design
practices and evaluating the system through a Mechanical Turk
experiment, we discovered a considerable span of design consid-
erations for XAl systems. By interpreting these results in light of
learning science literature, we have produced the following main
take-aways for designers of algorithmic explanations by example:

(1) Different educational backgrounds require different approaches
to designing an explainable.

(2) Users had conflicting opinions of how much detail was an
effective amount of detail to include in explainable tutorials.
This points to users having varied prior knowledge and the
importance of identifying a range of Zones of Proximal De-
velopment [6] that should be catered to pedagogically within
the explainable.

(3) Not all users were interested in deeply understanding the
complex algorithm. It is important to provide an overview
for all users, but also a details-on-demand option.

(4) Users will be engaged differently with the explainables’ con-
tent. Not all users find learning about algorithms intrinsically
enjoyable. Motivating the explainable content from various
perspectives can help, as can creating an engaging explain-
able experience.

(5) Our two initial explainables targeted different depths of BKT
understanding. However, it is unclear how much depth is
necessary to achieve post-hoc ‘interpretability. Explainable
designers should identify which algorithmic concepts are
important to achieve their desired outcomes, and then teach
those concepts.

This first user-centered design study and Mechanical Turk exper-
iment has provided initial insight for designing instructive, in-
teractive explainables with usability and knowledge-building at
the center of the process. Going forward, we have plans to more
systematically determine how much algorithmic understanding is
necessary to achieve shifts in attitudes of system trust as well as
decision-making behavior.
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