
A Mathematical Model of Hardware Prefetching

Kevin Dick
California Institute of Technology

kdick@caltech.edu ∗

Abstract

Modern processors are sometimes equipped with hardware prefetchers, which attempt to eliminate
cache misses by prefetching data from main memory into the cache before it’s explicitly requested.
The practical improvement allowed by prefetching is studied exhaustively for various algorithms in [4].
Prefetching is observed to give substantial speedup for traditional and even specially designed cache
efficient algorithms. These experimental results demand a more thoroughly developed theoretical
framework for analysis of the prefetching phenomenon. In this paper, an analytical model of the
hardware prefetcher is introduced. The model is compared to the existing experimental results, to which
it has reasonable agreement. Finally, implications of the model for future development of algorithms
are discussed.

∗Supervised by Richard E. Ladner, University of Washington. ladner@cs.washington.edu.

1



The time complexity of algorithms has traditionally been studied exclusively in terms of the in-
struction count. More recently, efforts to construct cache efficient algorithms have focused on adapting
asymptotically optimal algorithms to the multiple tiers of the memory hierarchy. Frigo et al. present
several algorithms which are oblivious to hardware parameters with an asymptotically minimal number
of instructions and cache misses under a simple two-tiered memory model [1]. An additional hardware
feature, though, makes several theoretically optimal cache efficient algorithms less effective in practice.
The hardware prefetcher of the Intel Pentium 4 processor allows for bytes to be loaded from main memory
into the L2 cache before being explicitly requested. To anticipate desired bytes, the prefetcher keeps track
of previous cache misses. Its range is limited to 256 bytes ahead of current accesses and it can operate
on up to eight concurrent data streams [2].

Given the magnitude of its allowed speedups, surprisingly little attention has been given to studying
the effects of the prefetcher for various algorithms. In the experiments by Pan et al., standard and cache
efficient implementations of algorithms are studied with and without prefetching enabled. The prefetcher
almost universally allows for significant improvement. For some of these algorithms, the prefetcher makes
standard implementations faster than cache efficient ones, even when the cache efficient methods out-
perform standard ones without the prefetcher. This disparity implies that speedups delivered from the
prefetcher are highly sensitive to memory access patterns. In order to understand these distinctions, a
mathematical model of the prefetcher is developed.

Despite being a hardware mechanism, the prefetcher lends itself readily to analytical study. We begin
by defining several relevant parameters. For simplicity, assume that we have main memory and a single
cache level. Our cache will have blocks of size b and require c processor cycles to pull up a block from
main memory on a cache miss. Suppose we fix some stride s and choose to access every s bytes in memory.
We’ll consider the number of processor cycles spent per byte accessed. For each access, we spend a total of
p cycles putting the byte into a register and performing some sort of computation, then possibly writing
to the byte. With the prefetcher disabled, counting the time needed for our operations gives

Cycles per memory access =
{

c + p if s > b
s
b · c + p if s ≤ b

.

Enabling the prefetcher, we require an additional parameter r denoting its range. If the time spent
computing with the current block is enough to allow the prefetcher to bring in our next block entirely,
cache misses are effectively removed. Otherwise, we need to finish pulling the next block into the cache
after finishing with the current block. We assume that the prefetcher range r exceeds the block size b.
Counting up the number of cycles for our different cases, we get

Cycles per memory access =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c + p if s > r

c if b < s ≤ r and c > p

p if b < s ≤ r and c ≤ p
s
b · c if s ≤ b and c > b

s · p
p if s ≤ b and c ≤ b

s · p

.

We can compare these analytical predictions to the results of [4]. The setup there used blocks of 64
bytes and had a prefetcher range of 256 bytes. The cost c of a cache miss and the processing parameter
p are estimated at 100 and 20 cycles, respectively. The experiments of [4] also used the adjacent cache
line prefetch feature, which effectively considers adjacent pairs of cache lines as single blocks. This
is equivalent to replacing b with 2b in the model. Then the predictions of the described model give

2



5

10

15

20

25

30

35

40

50 100 150 200 250 300

Ti
m

e 
P

er
 M

em
or

y 
A

cc
es

s

Stride Length

Prefetcher Disabled
Prefetcher Enabled

Model Without Prefetching
Model With Prefetching

Figure 1: Comparison of experimental results with model predictions. The stride is given in bytes and
the units of time are only relative.

reasonable agreement with the experimental results in Figure 1. In particular, the plots of both without
the prefetcher show a roughly linear increase until the stride surpasses the block size, at which point
the curves flatten. With the prefetcher enabled, we have a flat plot when the prefetcher can eliminate
the cost of cache misses entirely. As the cost of cache misses becomes significant the cycles per access
scale linearly. Finally, when the prefetcher is out of range we reduce to the original case. The agreement
between this model and the experimental results is limited, due in part to the model’s false assumption
of a single level cache. Although more intricate experiments are feasible, the prefetcher’s functionality
depends critically on linear memory access patterns, hinting at the difficulty of modeling experiments
with less patterned accesses. Future work might demand additional details on the prefetcher’s ability to
predict cache misses, which could be used to construct a more sophisticated model in conjunction with
further experiments.

This theoretical model, while substantially simplifying the prefetcher’s functionality, allows for some
basic qualitative observations useful in algorithm design. Generally, long sequences with fixed strides of
memory accesses are desirable. As the model suggests, the prefetcher is most effective at eliminating the
cost of cache misses with large p and small s parameters. This translates into allowing enough time for the
prefetcher to pull in the next cache block while useful computation is still being performed. As p shrinks
and s increases, the prefetcher is less capable of concealing cache misses. In general, then, construction
of algorithms designed to perform well under prefetching relies critically on using bytes close together in
a linear fashion. Performing light computation after each successive memory access as opposed to heavy
computation after several accesses is preferred. These observations justify the successes of the algorithms
studied experimentally and imply guidelines for algorithm design in the context of prefetching.

3



References

[1] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-Oblivious Algorithms. 40th
Annual Symposium on Foundations of Computer Science (FOCS). pages 285-298. 1999.

[2] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The Microarchi-
tecture of the Pentium 4 Processor. http://www.intel.com/technology/itj/q12001/pdf/art 2.pdf.

[3] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. http://www.intel.
com/design/processor/manuals/253669.pdf.

[4] S. Pan, C. Cherng, K. Dick, and R. E. Ladner. Algorithms to Take Advantage of Hardware Prefetch-
ing. To appear in the Workshop on Algorithm Engineering and Experiments (ALENEX). 2007.

4


