
Fault Tolerant Network Coding

Ravishankar Krishnaswamy

ravishankar.k@gmail.com

Guide: Pandurangan Chandrasekaran

rangan@shiva.cs.iitm.ernet.in

Indian Institute of Technology Madras

May 15, 2007

Abstract

Consider a communication network in which a source node wishes to multicast information to
some sink nodes on the network. In the traditional setting, every node can only pass on the data it
receives from incoming links to the links leaving it. We consider an extended setting which gives the
intermediate nodes more “power”. In our model, each node may send any linear combination of the
received data on the outgoing links. Such protocols, known as Linear Network Coding schemes, have
been proved to guarantee optimal multicast throughput (that is, the maximum number of different
data packets the source can transmit to all the sinks in one execution of the protocol matches the
theoretical bound). In this work, we address the problem of fault tolerance in network coding. More
specifically, we are interested in obtaining reliable coding schemes which guarantee optimal (in a sense
we shall explain later) throughput even when some edges stop functioning, or are corrupt by noise.

We modify an existing algorithm to provide a centralized scheme for finding such codes that tolerate
any failure pattern from a polynomially bounded set of possible failure patterns in a network. A failure
pattern is a set of edges that fail (transmits a zero message). When an edge fails, it is assumed to fail
throughout the execution of the protocol. Our algorithm is rate optimal in the asymptotic limit with
respect to the message packet size, in the sense that it sustains a flow rate equal to the minimum of
the max-flows from the source to the sinks with the failed edges being deleted. Such codes could be
utilized in networks where certain edges are prone to failure, and yet optimal throughput is expected
regardless of the edges failing. We also present simple extensions which optimally tolerate corruption
of edges by white noise (they transmit a purely random message).

1 Introduction

The concept of Network Coding was first introduced in the landmark paper [1] by Ahlswede et al. The
authors prove bounds on the capacity of network coding and show that it is possible to obtain optimal
throughput using network coding. The implication in a multicast setting is that one can achieve a
throughput equal to the minimum of the max flows from the source to each of the sinks - the theoretical
upper bound on network throughput. In [2], Jaggi et al obtain a polynomial centralized algorithm that
identifies the throughput maximizing linear network code for a directed acyclic graph.

Our Focus: We primarily focus on the robustness (tolerance to the failure/corruption of certain
edges) of network coding. We are interested in efficiently designing network codes that tolerate poly-
nomially many failure patterns. A similar setting is also considered by [2] and [3], but they assume
that the sinks have knowledge about the edges that failed. This assumption, however, may not be
valid in real-life networks. To the best of our knowledge, this is the first centralized algorithm for net-
work coding when edges fail, without any assumptions about apriori information of the specific failures.

Preliminaries: All networks considered are directed acyclic graphs G = (V, E). Let s ∈ V be
the source node and T = {t1, t2, ..., t|T |} ⊆ V \{s} be the set of sinks. The source s wishes to multicast
h elements x1, x2, . . . , xh where xi ∈ Fql . Each edge e ∈ E can transmit a single packet of information.
If an edge were to have a higher capacity k, we could replace it with k links of unit capacity. In
our framework, a packet p that is transmitted on an edge e is an h + 1 tuple (m, b1, b2, . . . , bh) where
m ∈ Fql and bj ∈ Fq. The vector b(e) = (b1, b2, . . . , bh) is called the global encoding vector of edge e.
Also b(e) is such that m = Σh

i=1
bixi.

2 Tolerance to Edge Failures

This section deals with network codes that can tolerate failure of some edges. We first consider
codes that tolerate single edge failures, and later extend it. We now provide an upper bound on the
throughput an algorithm can achieve under an edge failure when network coding is and is not employed.

Upper Bound: Consider a network with one source, two sinks and n intermediate nodes. The
source is connected to the n intermediate nodes, each of which has an outgoing arc to both the sinks.
We classify the edges connecting the source and the intermediate nodes to be in level 1, and the edges
connecting the intermediate nodes to the sinks to be in level 2. Clearly, the minimum of the max-flows
from the source to each of the sinks in this setting is n. When we wish to tolerate an edge that can
fail, we notice that this value drops to n − 1. This is the bound that our routing protocols should try
to achieve. If we do not employ network coding, a rate of n − 1 cannot be achieved. This is because,
if the source were to send n− 1 packets of information to the intermediate nodes, it could repeat only
one of these packets in the remaining level 1 edge. If n > 1 and a level 1 edge not carrying a packet
that is repeated fails, there is no way by which that packet could be retrieved. With network coding,
however, the source could send packets x1, x2, . . . , xn−1 along the first n − 1 level 1 edges and the
packet x1 +x2 + . . .+xn−1 to the last intermediate node. Note that any n−1 out of the n vectors that
are transmitted along level 1 edges are linearly independent. Therefore, even when any one edge fails,
the sink will definitely receive n − 1 linearly independent equations in the variables x1, x2, . . . , xn−1.
A similar argument works when up to k edges can fail in the network. We can show while the upper
bound is n − k, without network coding, the maximum possible throughput is bn/(k + 1)c.

Lower Bound: Let G have a max flow of n from the source to each of the sinks. Let carried(ei, k)
stand for the global encoding vector on edge ei in the occurrence of failure on edge ek. We first identify
n edge disjoint paths from the source to each sink t. At any instant we consider the set Bk

t of such
global encoding vectors on one edge from each path. As we traverse the edges, we keep updating these
sets with the goal that eventually there would exist n − 1 linearly independent vectors in each set.
sinks(ej) is the set of sinks in whose edge disjoint paths edge ej occurs. a represents the pseudo-inverse

1

of b just like in [2]. We also maintain the b − a table with values of the pseudo-inverse vectors (a) for
b ∈ Bk

t with respect to each subset of Bk
t of size n − 1 containing b (such a set would form a basis for

Fq
n−1 due to the invariant maintained).

Theorem 2.1 Given any graph G whose minimum max flow from s to the sinks is n, there exists a
centralized network coding scheme that guarantees a throughput of n− 1 under any single edge failure.

1. The flow decomposition procedure ([4]) is executed to obtain the n edge disjoint paths from s to each sink t. The imaginary edge

gi is made to precede the ith such path.

2. For all k, Set Bk
t = B where B = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1), (1, 1, . . . , 1)}. Let each vector be the global

encoding vector on each of the n imaginary edges leading to s. That is, for all k = 1, 2, . . . , |E|, we set carried(gr, k) =

(0, 0, . . . , 1, 0, . . . , 0) - the rth identity basis vector in Fq
n−1 for 1 ≤ r < n, and carried(gn, k) = (1, 1, . . . , 1). The b − a table is

then populated accordingly.

3. Traverse the edges in the topological order e1 to e|E|. It is to be noted that when traversing ei, all incoming edges to head(ei)

have already been traversed. Let ej be the edge that is currently traversed. Perform steps 4 to 21

4. For k = 0 to j − 1

5. Initialize the list U = φ.

6. For t ∈ sinks(ej)

7. Obtain from the b−a table for sink t, all values of (bi, aj) such that bi = carried(prev(ej , t), k) and add the (bi, aj)
tuple to the list U.

8. End For

9. Remove all redundant entries from U.

10. Using the replacement vector algorithm ([2]), find a vector b such that b.aj 6= 0 for all aj such that (bi, aj) ∈ U.

11. Set carried(ej , k) = b.

12. For t ∈ sinks(ej)

13. Mark Bk
t for updating to Bk

t \ {carried(prev(ej , t), k)} ∪ {b}. Also run the pseudo-inverse procedure ([2]) to obtain
the changes to be done to the b − a table. Mark these changes as well.

14. End For

15. End For

16. Set carried(ej , j) = 0.

17. For t ∈ sinks(ej)

18. Set Bk
t = Bk

t \ {carried(prev(ej , t), k)} ∪ {0}.

19. Update the jth group of the b − a table such that only the b, a values corresponding to the non-zero b vectors in Bk
t

remain (there will be n − 1 such vectors).

20. End For

21. Update all the changes in the sets Ct, Bk
t and the b − a table that were marked for updating in step 13.

22. End Traversal

Proof Sketch: Though the way we assign the global encoding vector carried(e, k) makes it appear
that it depends on the edge ek that has failed, we note that the global encoding vector is actually just
a function of the incoming packets’ global encoding vectors. This is so because, for two different sets
of incoming global encoding vectors {b1, b2, . . . , bi} and {b′

1
, b′

2
, . . . , b′i}, where i is the in-degree of the

current node we are considering, the list U that is chosen would be the same if bj = b′j . Therefore,
the outgoing global encoding vector would also be the same, regardless of which edge has failed. The
fact that the above procedure keeps as many vectors linearly independent as it can is because of step 10.

Polynomial Edge Failure Patterns: We now extend the above result to an algorithm allowing
failure in any one of polynomially many edge patterns. A failure pattern is a set of edges that fail
(rather than just a single edge).

Theorem 2.2 Given any graph G and a polynomial set FP of failure patterns, suppose the minimum
of the max-flow from s to each sink t is at least h even after deleting the failed edges of any pattern
p ∈ FP. There exists a centralized network coding scheme that guarantees a throughput of h under
any edge failure pattern.

The basic idea is to generate a set of n vectors such that any h of them are linearly independent. We
observe that a purely random generation of n vectors satisfies this requirement with sufficient proba-
bility so long as the field size is large. We then run the centralized algorithm trying to maintain one
set of h linearly independent vectors for every failure pattern.

Noisy Edges: To handle a scenario where a failed edge transmits a perfectly random message (in-
stead of 0), we add some redundancy to the message packet transmitted. If we modify the transmitted
packet on an edge e to an h+2 tuple (m, b1, b1, b2, . . . , bh) instead of the h+1 tuple (m, b1, b2, . . . , bh),
we could detect white noise on edges with probability 1/q by performing the check that the 2nd and
3rd elements of the received packet are the same. We then treat these edges as failed and proceed.

2

References

[1] R. Ahlswede, N. Cai, S-Y.R. Li, and R.W. Yeung. Network information flow. IEEE Transactions
on Information Theory, 46(4):1204–1216, 2000.

[2] S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, K. Jain, and L. Tolhuizen. Polynomial time
algorithms for multicast network code construction. IEEE Transactions on Information Theory,
51(6):1973–1982, 2005.

[3] R. Koetter and M. Medard. Beyond routing: An algebraic approach to network coding. In
Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications
Societies(INFOCOM), pages 122–130, 2002.

[4] L.R. Ford Jr. and D.R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathe-
matics, 8:399–404, 1956.

3

