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ABSTRACT

Defeat mechanisms are strategies for achieving victory
over an opponent. Although defeat mechanisms often
rely on influencing the opponent psychologically and
emotionally, most simulations of warfare do not model
these “soft” factors, they model only victory by attri-
tion. To create more accurate, adaptable, and believ-
able systems, we must be able to model a variety of
defeat mechanisms. We propose a model where param-
eters and attributes that affect emotional and physical
fatigue are combined to produce an overall measure of
fatigue called effective fatigue. Effective fatigue, along
with an agent’s state, is combined by a defeat model
to produce probabilities of surrender. We create war-
fare scenarios involving catastrophe and surprise, and
then examine the model’s behavior under these scenar-
ios. We conclude with a discussion of how the model is
related to our own Capture the Flag wargaming system.

1 INTRODUCTION

Frequently, the goal of military action involves mak-
ing one’s opponent capitulate, so the study of mili-
tary action includes defeat mechanisms, or strategies
for achieving capitulation. Defeat mechanisms include
the element of surprise, catastrophe, as well as vic-
tory by attrition (Clausewitz 1976, Tzu 1963). Surprise
means catching an agent off-guard both psychologically
and physically, catastrophe means inflicting significant
damage in a short interval, and victory by attrition in-
volves persistent damage until an agent surrenders or
is destroyed. One view of defeat is that the warrior
has a limited supply of psychological and physical re-
sources, and that defeat occurs when these resources are
used up. Courage, for example, is considered by Lord
Moran to be a “a moral quality” that is spent over time
(Moran 1945). While grinding attrition undoubtedly
depletes a warrior’s psychological resources, other de-
feat mechanisms might bring about capitulation more

Figure 1: The Capture the Flag Wargame Simulator

quickly. However, it is difficult to empirically evalu-
ate various defeat mechanisms and combinations of de-
feat mechanisms, because modern wargaming systems
model only victory by attrition (Zimm 1999). While
military theorists design maneuvers explicitly to affect
the psychological state of their opponents, they lack the
simulation tools to evaluate these effects. A wargam-
ing system that accurately models factors of fatigue,
and their effect on an agent’s probability of surrender
is more accurate, in a predictive and explanatory sense,
than one that does not.

We have developed a wargame simulator called Cap-
ture the Flag (CtF). Using CtF (see Figure 1), we can
predict and explain courses of action (COA) in war.
We have recently added fatigue and defeat models to
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Figure 2: The Abstract Fatigue Model

CtF thereby increasing the accuracy of our simulator,
creating more adaptive behavior in planning for defeat,
and allowing us to better explain battles and their out-
comes.

There is little research in the area of modeling fatigue
and defeat in military warfare, and much of it is incon-
clusive (Hudlicka and Billingsley 1999). In this paper,
we propose abstract models for fatigue and defeat. We
identify measurable parameters that affect physical and
emotional fatigue, such as attrition and the proximity
of opposing troops. Our fatigue model combines these
parameters along with other attributes such as fear and
courage to produce an overall measure of fatigue called
effective fatigue. Our defeat model combines effective
fatigue with an agent’s state to compute a probability
of surrender.

2 MODELING FATIGUE

In our system, we do not try to simulate psychological
or physiological processes in individual warriors, but
instead we model the collective fatigue of a unit (e.g.,
a battalion) as a weighted sum of factors that influ-
ence fatigue. Fatigue is a function of its physical, emo-
tional, and personal components. Physical fatigue can
be thought of as a depletion of energy or mass, while
emotional fatigue summarizes the effects of sensations
such as fear, courage, aggression, and morale. Personal
components are traits inherent to agents; for example,
an agent’s warfare style may designate that it always
fights to the finish or is quick to surrender.

Personal traits and factors influencing physical fa-
tigue are often directly observable (e.g., warfare style,
hours without sleep, attrition, length of current battle,
etc.). In contrast, factors affecting emotional fatigue
are difficult to measure directly.

Our fatigue model consists of parameters, which are
directly measurable quantities, and attributes, which
are not directly measurable. The values of parameters
are supplied directly to the model via the person build-
ing it, or through values present in an external system,
while attributes are variable and are influenced by other
attributes and parameters in the model. Effective fa-
tigue is a combination of parameter and attribute val-
ues. Later, in Section 3.1, we will show how effective
fatigue is combined with information about an agent’s
state to produce an overall probability of surrender.

2.1 The Abstract Fatigue Model

Figure 2 represents our abstract fatigue model. For-
mally, the model is a four-tuple FM =< P,A, Fe, α >
where:

• P =< p0, p1, . . . , pn−1 > = a vector of parameters

• A =< a0, a1, . . . , am−1 > = a vector of attributes

• Fe = effective fatigue

• α =< α0, α1, . . . , αq−1 > = a vector of influence
arcs

Parameters and attributes are connected to effective
fatigue through arcs, which represent influence. Each
arc αi =< n0, n1, ψ > is a three-tuple consisting of a
from-node (n0), a to-node (n1), and an influence func-
tion (ψ). The influence function ψ allows us to control
the effect, or influence, parameters and attributes have
on effective fatigue. We allow outward-pointing arcs
(feed-forward arcs) from parameters and attributes to
effective fatigue, but conversely, inward-pointing arcs
(feed-back arcs) are directed at attributes only.

Zimm (1999) justifies the feedback arcs, noting:

• destruction causes panic and paralysis; and

• panic and paralysis facilitates destruction.

Moreover, since attribute values are not directly mea-
surable, our modeling language provides means for cal-
culating those values as combinations of measurable
quantities (i.e., parameters). Detailed discussion and
concrete examples will follow in Section 4.

3 THE DEFEAT MODEL

A defeat model contains a base probability of surrender,
a set of states, rules for specifying when state transitions
are made, and functions that specify how the current
probability of surrender is computed based on the time
spent in the current state.
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Figure 3: A Possible InBattle Sub-state

Every defeat model has an initial base probability of
surrender. This base probability is purely a function
of effective fatigue. In addition, modelers may define
other states. These additional states modify the initial
probability to produce an agent’s final probability of
surrender.

The defeat model’s estimation of an agent’s proba-
bility of surrender is based heavily on an agent’s cur-
rent state in war. For example we may occupy a Pre-
paredForBattle state, that indicates we are cur-
rently not in, but prepared for, battle. Each state is
comprised of sub-states. This removes the complex-
ity of war, by decomposing situations into identifiable
units. For example, the PreparedForBattle state
may be comprised of Prepared and NotInBattle
sub-states. Collectively, sub-states describe an agent’s
current situation in war. Each state combines its sub-
states to compute an agent’s overall probability of sur-
render.

3.1 Defeat Model States

Formally, a state is a three-tuple Si =< ω, CSi , λ >
where:

• ω = a set of sub-states.

• CSi = a set of criteria for transitioning into state
Si.

• λi = λi(ω) = the probability of surrender for state
Si = a combination function over our set of sub-
states ω.

Each sub-state ωi is composed of a modifier function
ρ and a set of criteria, Cωi , for state transition. For ex-
ample, the InBattle sub-state in Figure 3 states that
we are in battle when we were not in battle and sud-
denly incur damage, or when an opponent is 5 units

ω1)
λ λ1( ρ1

ω2)
λ λ2(λ ,ρ2

ω� )
λ λ (λ ,ρ � )

)

Figure 4: A Possible Combination of Sub-states

of distance away from us. The function ρ denotes how
long we have occupied the sub-state ωi. It is also used
by the combination function λi to modify the overall
probability of surrender. For example, in Figure 3, we
see that the InBattle modifier increases the probabil-
ity of surrender at the start of a battle, but over time,
decreases its influence.
CSi is the union of transition criteria Cωi , for every

sub-state ωi.
λi is the combination function. It provides a means

of computing an overall probability of surrender based
on our set of sub-states ω and the base probability of
surrender B.

For example, Figure 4 illustrates one possible com-
bination function. Given n sub-states, we arbitrarily
order them ω1, . . . , ωn. First, ω1 calculates its modifier
value by computing, λ1(ρ1(t1),B), where t1 is the time
we have occupied state ω1 and B is our base probabil-
ity of surrender. Next ω2 computes it’s modifier value
based on ρ2 and λ1. We continue this process until we
reach sub-state ωn, where λn denotes the agent’s final
probability of surrender.

4 MODELING CATASTROPHE AND SUR-
PRISE

In this section, we create example fatigue and defeat
models and view the effects of catastrophe and surprise
scenarios on the model. We also analyze and examine
the overall behavior of the fatigue and defeat models.

4.1 An Example Fatigue Model Instance

Each warfare system is different. To make the model ac-
curate, the designer of the wargame system must answer



Figure 5: An Instance of the Fatigue Model

questions such as “What levels of fatigue are high?” and
“How much damage is usually incurred during a given
period of time?”

Figure 5 represents an instance of our fatigue model
FM. In our warfare system, 450 units of effective fa-
tigue is high and, in battle, 10 units of damage per
tick is typical. That is, when an agent’s effective fa-
tigue level reaches 450 units of damage, we should start
seeing significant increases in its respective probabil-
ity of surrender. It is worth noting that each agent in
our system is representative of a battalion or brigade.
Hence, for our purposes, the effect of each catastrophe
and surprise scenario is not measured on an individual
level, but at a higher resolution.
FM consists of four attributes and two parameters

(see Table 1). Each attribute ai and parameter pi has
value in the open interval (0, 1), except for attrition
which has value in the open interval (0,+∞).

Courage represents an agent’s spirit and tenacity. We
define acourage = 0 as feeling extremely courageous and
acourage = 1 as a total lack of courage, or even a state of
frenzy. Moran (1945) suggests courage may help in bat-
tle, thus our arc is weighted on the interval (−10, 10).
Note that negative weight values allow acourage to lower
effective fatigue.

Health represents an agent’s level of sickness. We de-
fine ahealth = 0 to be completely healthy, and ahealth =
1 to be deathly ill. We model health as an attribute
because an agent’s level of sickness is difficult to mea-

Table 1: Our Fatigue Model Attributes and Parameters

name type symbol
courage attribute acourage

fear attribute afear

health attribute ahealth

morale attribute amorale

warfare style parameter pstyle

attrition parameter pattrition

sure directly. Note that health is different from attri-
tion, but can both influence and be influenced by attri-
tion indirectly, through effective fatigue. Our feedfor-
ward arc uses a simple function f(x) = 30x to account
for the effect of health on effective fatigue. Essentially
then, we can view our feedforward arc as having weight
30 ∗ ahealth.

Morale represents an agent’s level of confidence, en-
thusiasm and sense of purpose. We say amorale = 0
means morale is high, and amorale = 1 indicates morale
is low. The feedforward arc has weight (60∗ahealth)−30.
That is, amorale is mapped into the open interval
(−30, 30).

Fear represents an agent’s level of trepidation. We
say a unit is feeling no fear when afear = 0 and filled
with fear when afear = 1. Fear has an associated arc
weight of 40 units.

Warfare style characterizes a bias in battle style in-
herent to an agent or group of agents. We say that
pstyle = 0 means under no circumstance will a unit
surrender, and that pstyle = 1 means under most cir-
cumstances a unit will surrender. To model this cor-
rectly, we attach some parabolic function (say f(x) =
5000(x−.5)2), that allows us to create overwhelming in-
fluences on effective fatigue. For example, if an agent’s
warfare style is to surrender quickly and easily, our arc
will produce negative weights that consume all other
influences. That is, the arc weight value is so low, that
all other attribute and parameter effects on effective
fatigue are rendered meaningless.

Attrition alone comprises this model’s representation
of physical fatigue. An agent’s attrition level (i.e. com-
bat attrition) is provided directly from the wargame
system. That is, after every tick t, the system updates
pattrition (via the incoming arc) to reflect an agent’s
current damage level.

While we want to propagate the actual value of attri-
tion forward to effective fatigue, we are also interested
in its rate of change. The rate of change of attrition
helps indicate when significant changes in battle occur.
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Figure 6: The Base Probability of Surrender

For example, a high rate of change in attrition may indi-
cate a catastrophe, while a sharp decrease may indicate
medical relief.

We map rates of change into the interval (−40, 40).
When rates of change are positive, a higher value from
our interval is added to attrition. When rates of change
are negative, a lower value from our interval is sub-
tracted from attrition. No rate of change in attrition
maps to 0 in the interval.

Effective fatigue has four arcs, providing feedback
to the morale, fear, health, and courage attributes.
Each arc has an associated function which first finds
the discrete derivative of effective fatigue over one time
unit, and maps that derivative to a multiplier m, where
0 < m < 2. Each value vi in attribute ai is then set to
m∗ai. The discrete derivative allows us to model signif-
icant increases or decreases in effective fatigue, and in
turn, provide corresponding feedback to the attributes.
We don’t model rate of change on arcs from attributes
to effective fatigue because the feedback mechanism in-
directly provides such a measure.

It is also worth noting that the effective fatigue value
for time t is computed by simply summing the values
returned by each of its feedback arcs.

4.2 An Example Defeat Model Instance

Our defeat model DM has a simple base probability of
surrender function based on the exponential distribu-
tion:

B(Fe) = αλe−λ(β−Fe) = 40 ∗ .0125e−.0125(450−Fe) (1)

Equation 1 is depicted in Figure 6. β determines
where the mean (α ∗ λ) of the distribution will occur.
Changing the α and λ values affects the convexness of
the exponential arc. In the beginning of Section 4 we

noted that 450 units of effective fatigue is significant in
our system. Because of this, we chose β = 450.

Our defeat model, DM, contains four states:

• Prepared/InBattle

• Unprepared/NotInBattle

• Prepared/NotInBattle

• Unprepared/InBattle

composed of four sub-states:

• Prepared

• Unprepared

• InBattle

• NotInBattle

Prepared denotes the state of being prepared for
battle. Unprepared denotes the state of being un-
prepared for battle. Both states use their respective
modifier and combination functions to respectively de-
crease and increase the input probability distribution
by a some percentage.

InBattle denotes the state of currently being in bat-
tle and NotInBattle denotes the state of currently
not being in battle. The Battle modifier use a vari-
ant of the exponential distribution to produce higher
modifier values at the beginning of battle. The Not-
InBattle modifier uses the identity function to leave
the incoming probability of surrender unchanged.

4.3 Catastrophe and Surprise

Catastrophe and surprise are two unique defeat mecha-
nisms used in warfare. Catastrophe relies heavily upon
inflicting massive physical damage on an agent in a rela-
tively short period of time. In contrast, surprise is more
psychological in nature. It seeks to catch an agent phys-
ically and emotionally off-guard in order to promote
surrender quickly and effectively.

We created a wargame system that models an agent’s
level of attrition over time. Using our system, we simu-
lated normal combat, catastrophe and surprise scenar-
ios. These scenarios were created through changes in
an agent’s level of attrition over time. We created in-
stances of the example fatigue and defeat models given
in Sections 4.1 and 4.2 and, after each tick of the simu-
lation, provided the agent’s current level of attrition to
the model. We then recorded the agent’s probability of
surrender for each respective time frame.
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Figure 7: Attrition Level for Catastrophe Scenarios
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Figure 8: Probability of Surrender for Catastrophe Sce-
narios

4.3.1 Catastrophe

Figure 7 depicts three scenarios in which catastro-
phe occurs at the beginning (Cbeginning), middle
(Cmiddle), and end (Cend) of the battle respectively.
The x-axis denotes time, which in this case, corre-
sponds to ticks of the simulator. The y-axis corre-
sponds to an agent’s probability of surrender at any
given tick. These catastrophe scenarios only transi-
tion between the Prepared/NotInBattle and Pre-
pared/InBattle states.

Figure 8 depicts the respective probabilities of sur-
render for each catastrophe scenario. We see that in
each case, when a catastrophe occurs, the probability
of surrender significantly increases.

Cbeginning contains a sharp increase in surrender be-
cause the catastrophe is significant and it occurs at the

beginning of a battle when the probability of surren-
der is higher. As soon as the battle begins though, it
ends, thus the sharp decrease in probability of surren-
der. This sudden drop is probably too dramatic. It
may be useful to introduce an intermediate state Bat-
tleOver between InBattle and NotInBattle that
prolongs the effects of a completed battle over some
time period. Later, at around tick 30, we see another
small catastrophe, and correspondingly, an increase in
the probability of surrender. The increase in probabil-
ity of surrender is fairly high considering only the small
catastrophe, however the cataclysm increased our dam-
age to significant levels.

Cmiddle contains a medium-grade catastrophe dur-
ing the middle of a battle. The calamity occurs after a
steady, constant increase in attrition, and hence the cor-
responding increase in probability of surrender is also
somewhat mid-grade. Notice that the probability of
surrender, up to the point of the disaster, is extremely
small and constant. This behavior seems fitting as the
rate of change in attrition levels is constant, and more-
over, those attrition levels are relatively low.

Cend contains three small catastrophes in succession
during the final 20 ticks. It appears the first two catas-
trophes only slightly increase the probability of surren-
der. This is justified by a number of factors. First,
the catastrophes occurred at times when attrition was
increasing. Next, the attrition levels were not at signif-
icant levels to propagate higher surrender probabilities,
and finally, the catastrophes were fairly insignificant.
The final catastrophe increases attrition to a signifi-
cant level and hence, the dramatic increase in the cor-
responding probability of surrender. One interesting
behavior is the sharp lowering of the surrender prob-
ability near the end of the battle. This sudden drop
seems wrong. A new intermediate state after Battle
may improve the model’s behavior.

There has been a significant amount of work done in
depicting catastrophe through smooth functions. Bifur-
cation theory attempts to fit a smooth function along
with a constant factor to a time-series. Through small
changes in the constant factor, discontinuities occur
in the smooth function, hence reflecting catastrophe
(Casti 1989). Thus, bifurcation theory may help indi-
cate if our model behaves correctly under catastrophe.

Using the probability of surrender time-series Cend,
we can easily fit the the smooth function α ∗ ex to the
curve using extremely low constant values (on the order
of 6.0 ∗ 10−25) for α (similar curve fittings are possi-
ble for Cbeginning and Cmiddle). Of course, the sudden
drops in the probability of surrender would indicate a
positive catastrophic event. Clearly, in our scenarios,
this is not the case.
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Figure 9: Attrition Level for Surprise Scenarios
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Figure 10: Probability of Surrender for Surprise Sce-
nario

4.3.2 Surprise

Figure 9 represents the attrition level for the surprise
scenarios. The scenarios are identical, hence, only the
one curve in Figure 9, except in one scenario, the agent
is always prepared for battle, while in the other, the
agent is always unprepared. This scenario contains
steady increases in attrition over time, not unlike a typ-
ical battle.

Figure 10 represents the probability of surrender as-
sociated with the given scenarios. Note the minor dif-
ferences in the probability of surrender during the first
state change. This minor escalation is due to low levels
of attrition. In contrast though, as attrition begins to
rise at tick 30 following a state change, we see a sudden
large influence in the associated probability of surren-
der. Due to a high and consistently increasing attrition
level, this increased probability of surrender is easily
justified.

5 DISCUSSION

We tested the model on catastrophe and surprise sce-
narios. The catastrophe scenarios reflected a significant
increase in an agent’s attrition over a short period of
time. The surprise scenarios used identical attrition
values, but designated different states for the agent.
Under both test scenarios, the model’s behavior was
fairly believable. The one caveat occurred soon after
catastrophes occurred, with sudden, dramatic drops in
the probability of surrender. That is, the model behaves
well when catastrophe first occurs, but is a bit more un-
predictable and sporadic after such calamities. Finding
the proper balance of states and probability modifiers
is certainly an area worth further investigation.

6 FUTURE WORK

For some time now, the Experimental Knowledge Sys-
tems Laboratory has been developing tools for simulat-
ing physics abstractly, for planning in dynamic, real-
time environments, and for hierarchical agent control
(Atkin et al. 1998, Atkin and Cohen 1998, Atkin et al.
2000). This work has led to the creation of a war-
fare simulator called Capture the Flag. Capture the
Flag, like other warfare simulators, uses a lanchester-
based attrition model and suffers from the “attrition
paradigm.” We have recently incorporated the fatigue
and defeat models into Capture the Flag. It will now
be possible to further explore the dynamics of battle,
comparing warfare simulations that incorporate defeat
mechanisms with those that do not.
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