
Estimating Grammar Parameters using Bounded
Memory

Tim Oates1 and Brent Heeringa2

1 Department of Computer Science and Electrical Engineering. University of Maryland
Baltimore County. 1000 Hilltop Circle. Baltimore, MD 21250

oates@eecs.umbc.edu
2 Department of Computer Science. University of Massachusetts, Amherst. Amherst, MA

01003
heeringa@cs.umass.edu

Abstract. Estimating the parameters of stochastic context-free gram-
mars (SCFGs) from data is an important, well-studied problem. Al-
most without exception, existing approaches make repeated passes over
the training data. The memory requirements of such algorithms are ill-
suited for embedded agents exposed to large amounts of training data
over long periods of time. We present a novel algorithm, called HOLA,
for estimating the parameters of SCFGs that computes summary statis-
tics for each string as it is observed and then discards the string. The
memory used by HOLA is bounded by the size of the grammar, not by
the amount of training data. Empirical results show that HOLA performs
as well as the Inside-Outside algorithm on a variety of standard prob-
lems, despite the fact that it has access to much less information.

1 Introduction

Stochastic context-free grammars (SCFGs) are perhaps best known as a tool for ex-
pressing the syntactic structure of natural languages. However, their utility extends well
beyond this one domain. In recent years SCFGs have been widely applied to problems
in computational biology, such as modeling the secondary structure of RNA families
[1]. Other applications include visual recognition of activities and language modeling
for speech recognition [2].

A problem of central importance in each of these applications is inducing SCFGs
from data. Solutions to this problem almost always have the following two properties:
(1) they make multiple passes through the data, often expending significant computa-
tion during each pass and (2) they require large amounts of data to accurately estimate
production probabilities. One experiment reported in the literature used the 30 million
word Wall Street Journal corpus to estimate the parameters of an English grammar [3].
The memory requirements of such algorithms are ill-suited for embedded agents ex-
posed to large amounts of training data over long periods of time. If children induced
syntax in this manner they would have to memorize a large number of the utterances to
which they are exposed, decide at some point to run an algorithm for inducing a gram-
mar from these utterances, and then suddenly have knowledge of the syntax of their
native language.

The goal of our work is to develop algorithms for inducing SCFGs from data that
have bounded memory requirements and that learn via incremental computation. The
former requirement implies that the amount of memory consumed by the algorithm
must remain fixed, regardless of the number of strings supplied as input. The latter
requirement implies that improvement in the grammar can occur with small amounts
of computation and that the quality of the grammar improves monotonically as more
computation is allocated to learning. This paper introduces an algorithm called HOLA

that satisfies both of these requirements. The novel approach taken by HOLA is justified
theoretically, and empirical results show that HOLA performs just as well as the Inside-
Outside algorithm in estimating the parameters of SCFGs from data despite the fact that
it has access to a bounded amount of information.

2 Background

Following Hopcroft and Ullman [4], a context-free grammar (CFG) is a four-tuple G =
(N, Σ, P, S) where N is a finite set of non-terminals, Σ is a finite set of terminals, P is
a finite set of productions or rules, and S ∈ N is the start symbol. N and Σ are disjoint.
Elements of P are of the form X → α where X ∈ N and α ∈ (N ∪Σ)∗. The language
accepted by G, denoted L(G), is a subset of Σ∗. A grammar is said to be ambiguous if
for some string w ∈ L(G) there is more than one way to derive w from S.

A stochastic context-free grammar is a CFG where each production is augmented
with a probability. The probability associated with production X → α is denoted
p(X → α). The probabilities of all the productions that expand any given non-terminal
must sum to one. The CFG underlying a SCFG is called the SCFG’s structure, and
the probabilities are called its parameters. The parameters of a SCFG are denoted Θ.
SCFGs define a probability distribution over strings. The probability of a string given a
SCFG is the sum over each derivation of the string of the product of the probabilities of
the productions used in the derivation.

Given the structure of an unambiguous SCFG it is easy to determine the maximum
likelihood parameters for a given training set, i.e. those parameters that maximize the
probability of the data given the grammar. Let D be a derivation of some string in
the training data and let c(X → α|D) be the number of times that production X →
α occurs in D. The maximum likelihood estimate of a production’s probability is as
follows:

p̂(X → α) =

∑

D c(X → α|D)
∑

D

∑

X→β c(X → β|D)

When a grammar is ambiguous there may be many derivations for a given string in
the training data and there is no way to know which one was actually used to generate
the string. Strings are observable but the actual derivation used to generate a string is
hidden. The Inside-Outside algorithm [5, 6] uses Expectation Maximization [7] to solve
this hidden data problem. In the expectation step, a weighted sum is computed for each
production of the number of times it occurs in the derivations of strings in the training
data, with derivation probabilities serving as the weights:

ĉ(X → α) =

∑

D p(D|G)c(X → α|D)
∑

D p(D|G)

In the maximization step, these expected counts are used to compute new parameter
estimates:

p̂(X → α) =
ĉ(X → α)

∑

X→β ĉ(X → β)

The Inside-Outside algorithm is the gold standard for accuracy of parameter esti-
mates. Other algorithms have been devised for estimating the parameters of SCFGs,
such as HOLA, that address limitations of Inside-Outside. But no algorithm has been
shown to do consistently better with respect to parameter estimation.

Two approaches that are especially relevant to the research described herein are Neal
and Hinton’s incremental EM [8] and Boyen and Koller’s online EM [9]. The idea be-
hind incremental EM is to speed the convergence of standard EM by running a complete
M step after the expected value of each hidden variable is computed, corresponding to
a single data item, rather than waiting until the expected values of all hidden variables
are computed. Doing so makes information available to the M step more quickly and is
shown empirically to speed convergence. That is, incremental EM requires fewer passes
through the data than standard EM. The algorithm can be used in an online setting by
repeatedly obtaining a new data item, running a partial E step, and discarding the item.
However, this greatly increases the total number of data items that must be observed
and may not be practical when large amounts of data are required for batch parameter
estimation. As previously noted, accurately estimating the parameters of SCFGs often
requires large amounts of training data, thereby making incremental EM less attractive.

Boyen and Koller’s online EM is based on Neal and Hinton’s incremental EM and
therefore shares its shortcomings with respect to SCFG parameter estimation. In ad-
dition, online EM was applied to parameter learning in dynamic Bayesian networks,
a representation that admitted effective belief state approximations, and it is unclear
whether the approach is feasible for SCFGs as well.

3 Motivation

The number of times a grammar’s productions occur in derivations of strings in the
training data plays an important role in parameter estimation. For unambiguous gram-
mars these counts are sufficient for recovering the maximum likelihood parameter es-
timates. For ambiguous grammars the Inside-Outside algorithm weights the counts by
derivation probabilities, a computation that requires storage linear in the size of the
training data.

The idea behind HOLA is to use unweighted counts to drive the search for parame-
ters, regardless of whether the grammar is ambiguous or unambiguous. The counts are
a function of two things – the structure of the grammar and the training data. The pa-
rameters of the learned grammar do not enter into their computation. However, because
the training data are sampled according to the distribution over strings defined by the
target grammar, the parameters of that grammar do affect the counts. HOLA attempts to
find a set of parameters that, given a fixed structure, will generate strings that yield the
same (or similar) counts as the training data. Because HOLA keeps a counter for each
production in the grammar rather than a set of derivations for the strings in the training

data, its memory requirements are linear in the size of the grammar regardless of the
size of the training corpus.

The natural way to formulate the search for a set of parameters is in terms of gradient
descent. Doing so requires a function that maps from grammars (both structure and
parameters) and counts to an error term that indicates how similar the counts are to
those that would result from sampling from the grammar. Taking the partial derivative
of this function with respect to the parameters of the grammar would make it possible to
perform gradient descent in parameter space. The main result of this section is a proof
that such a function is not computable and must therefore be approximated.

Given a set of counts, C1, and a grammar, G, we want to compute the counts, C2,
that would result from sampling from G so that C1 and C2 may be compared.

Definition 1. Let φ(X → α, G) be a function that computes the expected number of
times production X → α will occur in the derivation(s) of a string in L(G) sampled
according to the distribution over strings defined by stochastic context-free grammar
G:

φ(X → α, G) =
∑

s∈L(G)

p(s|G)

(

∑

D of s

c(X → α|D)

)

The following lemma will be useful in proving the main theoretical result of this
section. It says that for any stochastic context-free grammar G it is possible to create a
new grammar G′ that has certain desirable properties.

Lemma 1. Let G = (N, Σ, P, S) be a SCFG. Create grammar G′ = (N ′, Σ′, P ′, S′)
from G as follows. Let N ′ = N ∪ S′ where S′ 6∈ N and S′ is the start symbol of G′.
Let Σ′ = Σ and let P ′ = P ∪ S′ → S where p(S′ → S) = 1. The following are true:

(1) L(G′) = L(G)
(2) p(w|G′) = p(w|G) for all w ∈ L(G)
(3) c(S′ → S|D) = 1 for any valid derivation D

Proof: By construction, every derivation of a string in L(G′) starts by expanding S ′ to
S, where S is the start symbol of G. Therefore, any string that can be derived from S
can be derived from S ′. Because the productions of G′ are identical to those of G except
for the one involving S ′, the derivation(s) of w from S and S ′ will be identical except
for the initial application of S ′ → S in the latter case. Because the derivation(s) are the
same (after generating S in G′) for the two grammars and because p(S ′ → S) = 1 the
probabilities of the strings will be the same. 2

Now we are in a position to prove the following theorem.

Theorem 1. The function φ is not computable for an arbitrary production in an arbi-
trary stochastic context-free grammar.

Proof: Suppose that φ is computable. Let G′ be the grammar constructed as described in
Lemma 1 for some stochastic context-free grammar G. The construction of G′ ensures
that c(S′ → S) = 1 for every derivation. Consider φ(S ′ → S, G′), if G is unambiguous

Θ observed norm sample norm
S → A [0.5] 4 0.57 3 0.60
S → B [0.5] 3 0.43 2 0.40
A → y [0.5] 1 0.25 1 0.33
A → z [0.5] 3 0.75 2 0.67
B → z [1.0] 3 1.00 2 1.00

Fig. 1. A grammar that generates the language {y z}. Both observed and normalized counts are
provided for a bag of strings containing one y and three z’s.

then so is G′, in which case the inner sum in Definition 1 is one for all strings in L(G′)
and we have the following:

φ(S′ → S, G′) =
∑

s∈L(G′)

p(s|G′)

= 1

If G is ambiguous then there is more than one derivation for some string in L(G) and
thus more than one derivation for some string in L(G′), in which case the inner sum in
Definition 1 is greater than one for that string and φ(S ′ → S, G′) > 1. That is, we can
use the value of φ(S ′ → S, G′) to decide whether or not G is ambiguous. However, it
is undecidable whether an arbitrary CFG is ambiguous [4]. This is a contradiction, so φ
is not computable. 2

The import of Theorem 1 is that we cannot hope to perform gradient descent in
parameter space analytically. As described in the next section, HOLA uses sampling to
overcome this hurdle.

4 Algorithm Description

This section outlines the HOLA algorithm, gives examples of its execution, and dis-
cusses enhancements and improvements. In contrast to other learning algorithms, HOLA

does not use the observation (i.e., training) data directly to estimate grammar parame-
ters. Rather, learning is done indirectly by finding parameters that generate strings simi-
lar to the those observed. To this end, HOLA exploits the generative nature of grammars
as a means for learning.

The HOLA algorithm is given in Figure 2. HOLA attempts to recover the parameters
of the grammar generating the observation data. We call this the target grammar. The
structure of the target grammar is given to the algorithm, but the initial parameters are
set by random assignment or pre-training. We call the structure and current parameter
estimates the learning grammar. Given a learning grammar G and a set of strings S gen-
erated from the target grammar, HOLA learns a set of parameters that generate strings
statistically equivalent to the observed data.

First, HOLA finds the derivation of each string in S with respect to the grammar. This
process is called parsing and occurs in the HOLACOUNT subroutine of the algorithm.

HOLA(scfg,strings)
1. HOLACOUNT(scfg,strings)
2. UNLESS STOPPINGCRITERION(scfg)
3. HOLAITERATION(grammar)

HOLACOUNT(scfg,strings)
1. derivations← PARSE(scfg,S)
2. FOREACH d in derivations
3. FOREACH r in scfg.rules
4. r.observed← r.observed + COUNT(r, d)
5. NORMALIZEOBSERVEDCOUNTS(scfg)

HOLAITERATION(scfg)
1. sampleStrings← SAMPLE(scfg)
1. derivations← PARSE(scfg,sampleStrings)
2. FOREACH d in derivations
3. FOREACH r in scfg.rules
4. r.sample← r.sample + COUNT(r, d)
5. NORMALIZESAMPLECOUNTS(scfg)
6. UPDATEPARAMETERS(scfg)

Fig. 2. The HOLA algorithm.

Parsing is a function of the grammar structure, not the parameters. When the grammar
is ambiguous, multiple derivations may exist for a single string. For example, consider
the grammar in Figure 1 and the set of strings {y z z z}. The string y has a single
derivation, S → A → y, but z has two derivations, S → A → z and S → B → z.
Each possible derivation indicates what rules were used in generating the string. HOLA

finds the total occurrences of each rule in all the derivations, records them, and then
disposes of them. We call these observed counts since they come from the observed
data. Because HOLA searches for parameter estimates that produce strings with counts
similar to those observed, we need a general way to compare counts. For comparison,
HOLA normalizes the counts with respect to rules with the same left-hand-side. Only
the normalized count for each rule is stored. The observed counts are not updated, but
stay fixed throughout the rest of HOLA’s execution. Both the observed and normalized
counts for the data discussed above are given in Figure 1.

Next, HOLA iterates through a generate and update cycle until a stopping criterion is
met. This corresponds to the HOLAITERATION subroutine in the algorithm. This proce-
dure is nearly identical to HOLACOUNT except for two differences. First, the observed
data is replaced with a small sample of strings generated from the grammar. This sample
reflects the current parameter estimates. For example, generating a sample of size three
from the grammar in Figure 1 will probably result in two z’s and one y. Second, counts
taken from the sample are stored separately from the observed counts. At the end of the
generation phase, each rule r has two counts r.observed and r.sample. The pairwise
similarity of these counts indicates the similarity in the current parameter estimates and
the target parameters. HOLA updates each rule according to these differences:

p(r) = p(r) ∗ (1 + α ∗ (r.observed − r.sample))

Note that when the sample counts are smaller than the observed counts, the rule
probability increases. When the sample counts are larger, the rule probability decreases.
The change in parameter estimates potentially changes the strings we would expect
to see when generating a sample from the grammar during the next iteration. These
changes in turn move the parameters toward more likely estimates. The step-size pa-
rameter α helps learning narrow in on the correct parameter estimates. However, since
each iteration generates a set of strings, convergence to maximum likelihood estimates
probably does not happen because of sample variance.

5 Experiments

This section shows empirically that HOLA learns good parameter estimates using bounded
memory. We performed three experiments: two on unambiguous grammars generating
English phrases and palindromes and one on a small ambiguous grammar. In each ex-
periment we fixed the structure of the target grammar and conducted 50 independent
trials, randomly generating the target parameters in each case. A trial consists of gener-
ating 1000 strings of observation data from the target grammar. Next a learning gram-
mar is created by taking the structure of the target grammar and reinitializing it with
new random parameters. Finally, copies of the learning grammar are handed along with
the observation data to both HOLA and the Inside-Outside algorithm.

The Inside-Outside algorithm is known to converge to a set of parameters that lo-
cally maximize the likelihood of the data. We show HOLA performs comparably to
the Inside-Outside algorithm even though it uses less information and requires only
bounded memory. This evaluation of the learned parameter estimates is accomplished
by finding the log-likelihood of the data given the grammar and the learned parameters.

5.1 English Phrases

We used the English phrase grammar taken from Cook, Rosenfeld and Aronson [10]
in Figure 3 in our first experiment. This grammar is unambiguous and does not contain
any recursive rules, however, it is comparable in size to other grammars used in the
literature for grammatical inference (e.g., [11]). We ran HOLA for 100 iterations using a
sample size of 100 and decreasing the step-size parameter by 10% every 10 iterations.
We allowed the Inside-Outside algorithm to run until convergence. HOLA performed
well in comparison to the Inside-Outside algorithm in all trials. Figure 4 gives the per-
centage difference between HOLA and the Inside-Outside algorithm with respect to the
log-likelihood of the data given the learned parameters. In all trials the difference in per-
formance was less than one percent; in over half the trials, the difference was less than
two-tenths of one percent. The mean difference was 0.166 percent, the variance only
0.017 percent. In most cases the total difference in true log-likelihood was fractional.
We expect the differences will converge to zero once a suitable method for reducing

S → I am A
S → he T
S → she T
S → it T
S → they V
S → you V
S → we V
S → this C
S → that C
T → is A
V → are A
Z → man
Z → woman
A → there
A → here
C → is a Z
C → Z T

Fig. 3. A grammar generating English strings from Book, Rosenfeld and Aronson

sample variance is incorporated into HOLA. Empirically, though, HOLA tends to find
parameter estimates strikingly similar to those found by the Inside-Outside algorithm.

HOLA is also robust to differences in initial parameter settings. Applying linear
regression to the trials plotted as a function of performance difference and sorted initial
loglikelihood results in a near horizontal line (see Figure 5 with r2 = 0.03. This means
little correlation exists between HOLA’s performance and the initial log-likelihood.

Figure 6 shows the learning curve over 100 iterations for trial 1. Note that by iter-
ation 40, HOLA has settled in on good parameter estimates. Each subsequent iteration
walks locally around the maximum likelihood probably due to sample variance.

5.2 Palindromes

The second experiment involved the palindrome-generating grammar in Figure 7. This
grammar is unambiguous and contains two self-referential rules. HOLA ran for 300
iterations while decreasing the step-size by 5% every 10 trials. The results in Figure 8
show that in all trials, HOLA’s performance differs from the Inside-Outside algorithm
by less than one-half of one percent. In three quarters of the trials, the performance
difference was less than one-tenth of one percent. The mean percentage difference is
0.07, the variance 0.009. Like the first experiment, HOLA learns parameter estimates
only fractions away from those learned by Inside-Outside algorithm.

5.3 Ambiguous Grammars

Our final experiment used the simple ambiguous grammar discussed previously in Fig-
ure 1. We ran HOLA for 100 iterations with the step-size parameter decreasing every 10
iterations by 5%. Like in the other experiments, HOLA performs almost identically to

0 10 20 30 40 50

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

English Grammar

Trial # (sorted by initial log−likelihood)

P
er

ce
nt

ag
e

of
 D

iff
er

en
ce

mean

Fig. 4. The percentage difference in log-likelihood between HOLA and the Inside-Outside algo-
rithm for 50 trials using the English phrase grammar.

the Inside-Outside algorithm. In all the trials, save three, the percentage difference in
log-likelihood was less than half a percent. In an overwhelming majority of cases, the
difference was less than one-tenth of one percent. The mean difference in percentage
was 0.17, however, if we remove the three outliers the mean falls to 0.03. The variance
was 0.34, however, removing the outliers significantly reduces it to 0.002.

The higher difference in the three outliers occurs because learning isn’t finished. For
example, consider the farthest outlier, trial 2. Here, the negative log-likelihood after 100
iterations is around 192. The local maximum likelihood is 186.56. If we allow learning
to continue for 200 more iterations, HOLA finds better parameter estimates resulting in
a negative log-likelihood of 186.82 – only fractionally different from those found by
the Inside-Outside algorithm.

6 Discussion

Consider again the example grammar given in Figure 10. We know every SCFG defines
a probability distribution over the language of the grammar. In this case the distribution
is p(y) = .3 and p(z) = .7. Said differently, if we generate 10 sentences from our gram-
mar, we expect to see three y’s and seven z’s. In fact, the bag of strings containing three
y’s and seven z’s is the smallest corpus completely representative of the probability
distribution provided by Θ. That said, note that the observed counts of each rule, when

2800 3000 3200 3400 3600 3800 4000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

English grammar

Initial log−likelihood

P
er

ce
nt

ag
e

of
 D

iff
er

en
ce

Fig. 5. Percentage of difference in performance versus sorted initial log-likelihood on the English
phrase grammar. The line is a linear fit of the data.

suitably normalized, are poor estimators of the original parameters. This is because the
grammar is ambiguous. Furthermore, setting Θ to the normalized counts yields a com-
pletely different probability distribution over the language; p(y) ≈ .18 and p(z) ≈ .82.
But, recall that HOLA does not use the counts directly, but rather attempts to find pa-
rameter estimates where the sample normalized counts are equivalent to the observed
normalized counts—parameters that result in the observed probability distribution over
the language.

If we let p1 = p(S → A) and p2 = p(A → y) then 1 − p1 = p(S → B) and
1 − p2 = p(A → z). Any parameterization p1, p2 ∈ [0, 1] satisfying p1p2 = 0.30
results in a probability distribution over the language where y’s occur 30% of the time
and z’s 70%. Clearly these parameters may vary significantly from those in Θ. However,
from a generative view, they are good estimators since the expected output is equivalent
to the generating grammar.

One natural question is: Does a parameterization Θ′ exist for a grammar such that
the normalized counts are the same but the probability distribution over the language is
different? For the grammar at hand the answer is ‘no.’ The only way y can be generated
is through an application of A → y, so we know the normalized count for A → y is
p(y). This means the normalized count for A → z is p(z) = 1− p(y). Since S → B is
counted with the same frequency as A → z, its normalized count is p(z)/(1.0 + p(z));
the 1.0 in the denominator is added because S → A can derive the entire language.

0 20 40 60 80 100

−
4

0
0

0
−

3
8

0
0

−
3

6
0

0
−

3
4

0
0

−
3

2
0

0
−

3
0

0
0

−
2

8
0

0

iteration

lo
g

.li
ke

lih
o

o
d

Fig. 6. HOLA’s learning curve in trial 1 of the English phrase grammar.

S → A S A

S → B S B

S → A A

S → B B

S → A

S → B

A → y

B → z

Fig. 7. A grammar generating palindromes over the alphabet {y z}

This means S → A has a normalized count of 1/(2− p(y)). It’s clear for this grammar
that the probability distribution over the language corresponds linearly with the nor-
malized counts. This means fixing the counts results in only one possible probability
distribution over the language. To the best of our knowledge, whether this is true for all
stochastic context-free grammars is still an open question. We suspect that grammars
exist where multiple parameter estimates lead to different probability distributions over
the language while still resulting in identical rule counts, but these estimates locally
maximize the likelihood of the data.

7 Conclusion

The HOLA algorithm raises and addresses some interesting theoretical and empirical
questions. First, it incrementally learns likely parameter estimates of stochastic context-
free grammars using bounded space. Such algorithms are developmentally more plau-
sible and applicable in domains where large amounts of data are encountered and pro-
cessed over long periods of time. Second HOLA shows that using the generative nature
of grammars helps capriole the hurdle of analytically determing rule counts. At the same
time, sample variance hinders convergence but we’re confident that future work will
address and solve this problem. Still, empricial evidence shows that the Inside-Outside

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

Palindromes

Trial # (sorted by initial log−likelihood)

P
er

ce
nt

ag
e

of
 D

iff
er

en
ce

mean

Fig. 8. The percentage difference in log-likelihood between HOLA and the Inside-Outside algo-
rithm for 50 trials with the palindrome grammar.

algorithm, known to converge to parameters that are locally maximum, performs only
fractionally better than HOLA. Finally, we discussed the quality of the learned estimates,
specifically asking where in parameter space estimates that produce counts similar to
the data lie. While emprically the estimates move toward local maximum likelihood
locations, in the future we hope to show theoretical proof of such convergence.

8 Acknowledgements

Mark Johnson supplied a nice implementation of the inside-outside algorithm.
This research is supported by DARPA/USASMDC under contract number DASG60-

99-C-0074. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright notation hereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements either expressed or im-
plied, of DARPA/USASMDC or the U.S. Government.

References

1. Sakakibara, Y., Brown, M., Highey, R., Mian, I.S., Sjolander, K., Haussler, D.: Stochastic
context-free grammars for tRNA modeling. Nucleic Acids Research 22 (1994) 5112–5120

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Small Ambiguous Grammar

Trial # (sorted by initial log−likelihood)

P
er

ce
nt

ag
e

of
 D

iff
er

en
ce

mean

Fig. 9. The percentage difference in log-likelihood between HOLA and the Inside-Outside algo-
rithm for 50 trials with an ambiguous grammar.

2. Jurafsky, D., Wooters, C., Segal, J., Stolcke, A., Fosler, E., Tajchman, G., Morgan, N.: Using
a stochastic context-free grammar as a language model for speech recognition. In: Proceed-
ings of ICASSP. (1995) 189–192

3. Schabes, Y., Roth, M., Osborne, R.: Parsing the Wall Street Journal with the inside-outside
algorithm. In: Proceedings of the 6th Conference of the European Chapter of the Association
for Computational Linguistics. (1993) 341–346

4. Hopcroft, J.E., Ullman, J.D.: Introductin to Automata Theory, Languages, and Computation.
Addison Wesley (1979)

5. Lari, K., Young, S.J.: The estimation of stochastic context-free grammars using the inside-
outiside algorithm. Computer Speech and Language 4 (1990) 35–56

6. Lari, K., Young, S.J.: Applications of stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Language 5 (1991) 237–257

Θ observed normalized
S → A [0.6] 10/17 0.59
S → B [0.4] 7/17 0.41
A → y [0.5] 3/10 0.30
A → z [0.5] 7/10 0.70
B → z [1.0] 7/7 1.0

Fig. 10. A grammar that generates the language {y z}

7. Dempster, N.M., Laird, A.P., Rubin, D.B.: Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society B 39 (1977) 185–197

8. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and
other variants. In Jordan, M.I., ed.: Learning in Graphical Models, Kluwer Academic (1998)

9. Boyen, X., Koller, D.: Approximate learning of dynamic models. In: Neural Information
Processing Systems. (1998)

10. Cook, C.M., Rosenfeld, A., Aronson, A.: Grammatical inference by hill climbing. Informa-
tional Sciences 10 (1976) 59–80

11. Stolcke, A., Omohundro, S.: Inducing probabilistic grammars by bayesian model merging.
In Carrasco, R.C., Oncina, J., eds.: Grammatical Inference and Applications, Berlin, Heidel-
berg, Springer (1994) 106–118

