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Abstract. We give a (lnn + 1)-approximation for the decision tree (DT) prob-
lem. An instance of DT is a set of m binary tests T = (T1, . . . , Tm) and a set of
n items X = (X1, . . . , Xn). The goal is to output a binary tree where each inter-
nal node is a test, each leaf is an item and the total external path length of the tree
is minimized. Total external path length is the sum of the depths of all the leaves
in the tree. DT has a long history in computer science with applications ranging
from medical diagnosis to experiment design. It also generalizes the problem of
finding optimal average-case search strategies in partially ordered sets which in-
cludes several alphabetic tree problems. Our work decreases the previous upper
bound on the approximation ratio by a constant factor. We provide a new analysis
of the greedy algorithm that uses a simple accounting scheme to spread the cost
of a tree among pairs of items split at a particular node. We conclude by showing
that our upper bound also holds for the DT problem with weighted tests.

1 Introduction

We consider the problem of approximating optimal binary decision trees. Garey and
Johnson [8] define the decision tree (DT) problem as follows: given a set of m binary
tests T = (T1, . . . , Tm) and a set of n items X = (X1, . . . , Xn), output a binary
tree where each leaf is labeled with an item from X and each internal node is labeled
with a test from T . If an item passes a test it follows the right branch; if it fails a test
it follows the left branch. A path from the root to a leaf uniquely identifies the item
labeled by that leaf. The depth of a leaf is the length of its path from the root. The
total external path length of the tree is the sum of the depths of all the leaves in the
tree. The goal of DT is to find a tree which minimizes the total external path length. An
equivalent formulation of the problem views each item as an m-bit binary string where
bit i is 1 if the item passes test Ti and 0 otherwise. We use instances of this type when
discussing DT throughout this paper and denote them using the set of items X . If no
two strings in X are identical, every feasible solution to DT has n leaves. In this paper
we always assume the input is a set of unique strings since finding duplicate strings is
easily computable in polynomial time. Decision trees have many natural applications
(see [6,14,17] and references therein) including medical diagnosis (tests are symptoms)
and experiment design (tests are experiments which determine some property). In fact,
Hyafil and Rivest showed that DT was NP-complete precisely because ”of the large
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amount of effort that [had] been put into finding efficient algorithms for constructing
optimal binary decision trees” [11].

In this paper, we give a polynomial-time (lnn+1)-approximation for the decision tree
problem. This improves the upper bound on the approximation ratio given by Kosaraju et
al. [12] by a constant factor. More importantly, our work provides a substantially different
analysis of the greedy algorithm for building decision trees. We employ an accounting
scheme to spread the total cost of the tree among pairs of items split at internal nodes.
The result is an elementary analysis that others may find of independent interest. In fact,
our techniques have already been extended to the DT problem with weighted items [4].
We also consider the problem with weights associated with the tests (in contrast to the
items) and show that the (ln n + 1)-approximation remains intact.

1.1 Prior and Related Work

DT generalizes the problem of finding optimal search strategies in partially ordered
sets when one wishes to minimize the average search time (assuming each item is
desired with equal probability) as opposed to minimizing the longest search time [3].
The latter case corresponds to finding minimal height decision trees. This problem is
known to have matching upper and lower bounds (O(log n) and Ω(log n) respectively)
on the approximation ratio [2,13,15]. However these results do not generally apply to
DT because of the difference in the definition of cost. Additionally, DT generalizes
several Huffman coding problems including numerous alphabetic tree problem [12].

The name decision tree also refers to a similar but subtly different problem which
we call ConDT (for consistent decision tree) that is extremely hard to approximate. The
input to ConDT is a set of n positive / negative labeled binary strings, each of length m,
called examples1. The output is a binary tree where each internal node tests some bit i
of the examples, and maps the example to its left child if i is a 0 and its right child if i is
a 1. Each leaf is labeled either TRUE or FALSE. A consistent decision tree maps each
positive example to a leaf labeled TRUE and each negative example to a leaf labeled
FALSE. The size of a tree is the number of leaves. ConDT seeks the minimum size tree
which is consistent with the examples.

Alekhnovich et. al. [1] show it is not possible to approximate size s decision trees by
size sk decision trees for any constant k ≥ 0 unless NP is contained in DTIME[2mε

]
for some ε < 1. This improves a result from Hancock et. al. [9] which shows that
no 2logδ s-approximation exists for size s decision trees for any δ < 1 unless NP is
quasi-polynomial. These results hold for s = Ω(n).

Our results demonstrate that DT and ConDT – although closely related – are quite
different in terms of approximability: ConDT has no c lnn-approximation for any con-
stant c (unless P = NP) whereas our results yield such an approximation for DT for
c > 1. Also, we show that the lower bounds on learning decision trees of the ConDT
type hold when minimizing total external path length instead of minimum size. Note
that tree size is not an insightful measure for DT since all feasible solutions have n
leaves. Thus, it is the difference in input and output, and not the difference in measure,
that accounts for the difference in approximation complexity.

1 Many papers take m to be the number of examples and take n to be the number of bits.
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Moret [14] views DT and ConDT as unique instances of a general decision tree
problem where each item is tagged with k possible labels. With DT there are always
k = n labels, but only one item per label. With ConDT, there are only two labels,
but multiple items carry the same label. It appears then that labeling restrictions play a
crucial role in the complexity of approximating decision trees.

DT shares some similarities with set cover. Since each pair of items is separated exactly
once in any valid decision tree, one can view a path from the root to a leaf as a kind of
covering of the items. In this case, each leaf defines a set cover problem where it must
cover the remaining n − 1 items using an appropriate set of bits or tests. In fact, our
analysis is inspired by this observation. However, in the decision tree problem, the n set
cover problems defined by the leaves are not independent. For example, the bit at the
root of an optimal decision tree appears in each of the n set cover solutions, but it is
easy to construct instances of DT for which the optimal (independent) solutions to the n
set cover instances have no common bits. More specifically, one can construct instances
of DT where the n independent set cover problems have solutions of size 1, yielding a
decision tree with cost Θ(n2) but where the optimal decision tree has cost O(n log n).
Hence, the interplay between the individual set cover problems appears to make the DT
problem fundamentally different from set cover. Conversely, set cover instances naturally
map to decision tree instances, however, the difference in cost between the two problems
means that the optimal set cover is not necessarily the optimal decision tree.

The min-sum set cover (MSSC) problem is also similar to DT. The input to MSSC
is the same as set cover (i.e., a universe of items X and a collection C of subsets of X),
but the output is a linear ordering of the sets from 1 to |C|. If f(x) gives the index of
the first set in the ordering that covers x then the cost of the ordering is

∑
x∈X f(x).

This is similar, but not identical to the cost of the corresponding DT problem because
the covered items must still be separated from one another, thus adding additional cost.
Greedily selecting the set which covers the most remaining uncovered items yields a
4-approximation to MSSC [5,16]. This approximation is tight unless P=NP. As with set
cover, we can think of DT as n instances of MSSC, but again, these instances are not
independent so the problems inherent in viewing DT as n set cover problems remain
when considering DT as n instances of MSSC.

In the following section we describe and analyze our approximation algorithm for
DT. We then extend this analysis to the problem where weights are associated with
the tests (but not the items). In Section 3 we show that the lower bounds on learning
ConDTs hold for total external path length. Finally, we conclude with a discussion of
some open problems including the gap between the upper and lower bounds on the
approximation ratio.

2 Approximating DT

Given a set of binary m-bit strings S, choosing some bit i always partitions the items
into two sets S0 and S1 where S0 contains those items with bit i = 0 and S1 contains
those items with i = 1. A greedy strategy for splitting a set S chooses the bit i which
minimizes the difference between the size of S0 and S1. In other words, it chooses
the bit which most evenly partitions the set. Using this strategy, consider the following
greedy algorithm for constructing decision trees of the DT type given a set of n items X :
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GREEDY-DT(X)

1 if X = ∅
2 then return NIL

3 else Let i be the bit which most evenly partitions X into X0 and X1

4 Let T be a tree node with left child left [T ] and right child right [T ]
5 left [T ] ← GREEDY-DT(X0)
6 right [T ] ← GREEDY-DT(X1)
7 return T

Fig. 1. A greedy algorithm for constructing decision trees

A straightforward implementation of this algorithm runs in time O(mn2). While the
algorithm does not always give an optimal solution, it does approximate it within a
factor of ln n + 1.

Theorem 1. If X is an instance of DT with n items and optimal cost C∗ then GREEDY-
DT(X) yields a tree with cost at most (ln n + 1)C∗

Proof. We begin with some notation. Let T be the tree constructed by GREEDY-DT
on X with cost C. An unordered pair of items {x, y} (hereafter just pair of items) is
separated at an internal node S if x follows one branch and y follows the other. Note
that each pair of items is separated exactly once in any valid decision tree. Conversely,
each internal node S defines a set ρ(S) of pairs of items separated at S. That is

ρ(S) = {{x, y} | {x, y} is separated at S}

For convenience we also use S to denote the set of items in the subtree rooted at
S. Let S+ and S− be the two children of S such that |S+| ≥ |S−|. Note that |S| =
|S+| + |S−|. The number of sets to which an item belongs equals the length of its path
from the root, so the cost of T may be expressed as the sum of the sizes of each S:

C =
∑

S∈T
|S|

Our analysis uses an accounting scheme to spread the total cost of the greedy tree
among all unordered pairs of items. Since each set S contributes its size to the total cost
of the tree, we spread its size uniformly among the |S+||S−| pairs of items separated at
S. Let cxy be the pair cost assigned to each pair of items {x, y} where

cxy =
1

|S+
xy|

+
1

|S−
xy|

.

and Sxy separates x from y. Note that the greedy choice minimizes cxy. We can now
talk about the cost of a tree node S by the costs associated with the pairs of items
separated at S. Summing the costs of these pairs is, by definition, exactly the size of S:

∑

{x,y}∈ρ(S)

cxy = |S+||S−|
( 1

|S+| +
1

|S−|

)
= |S|
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Because two items are separated exactly once, C is exactly the sum of the all pair costs

C =
∑

{x,y}
cxy.

Now consider the optimal tree T ∗ for X . If Z is an internal node of T ∗ then we also
use Z to denote the set of items that are leaves of the subtree rooted at Z . Following our
notational conventions, we let Z+ and Z− be the children of Z such that |Z+| ≥ |Z−|
and |Z| = |Z+| + |Z−|. The cost of the optimal tree, C∗, is

C∗ =
∑

Z∈T ∗

|Z| (1)

Since, every feasible tree separates each pair of items exactly once, we can rearrange
the greedy pair costs according to the structure of the optimal tree:

C =
∑

Z∈T ∗

∑

{x,y}∈ρ(Z)

cxy (2)

If Z is a node in the optimal tree, then it defines |Z+||Z−| pairs of items. Our goal
is to show that the sum of the cxy associated with the |Z+||Z−| pairs of items split
at Z (but which are defined with respect to the greedy tree) total at most a factor of
H(|Z|) more than |Z| where H(d) =

∑d
i=1 1/i is the dth harmonic number. This is

made precise in the following lemma:

Lemma 1. For each internal node Z in the optimal tree:

∑

{x,y}∈ρ(Z)

cxy ≤ |Z|H(|Z|)

where each cxy is defined with respect to the greedy tree T .

Proof. Consider any node Z in the optimal tree. For any unordered pair of items {x, y}
split at Z , imagine using the bit associated with the split at Z on the set Sxy separating
x from y in the greedy tree. Call the resulting two sets SZ+

xy and SZ−

xy respectively. Since
the greedy split at Sxy minimizes cxy , we know

cxy =
1

|S+
xy|

+
1

|S−
xy|

≤ 1
|SZ+

xy | +
1

|SZ−
xy | ≤ 1

|Sxy ∩ Z+| +
1

|Sxy ∩ Z−| .

Hence ∑

{x,y}∈ρ(Z)

cxy ≤
∑

{x,y}∈ρ(Z)

1
|Sxy ∩ Z+| +

1
|Sxy ∩ Z−| . (3)

One interpretation of the sum in (3) views each item x in Z+ as contributing

∑

y∈Z−

1
|Sxy ∩ Z−|
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to the sum and each node y in Z− as contributing

∑

x∈Z+

1
|Sxy ∩ Z+|

to the sum. For clarity, we can view Z as a complete bipartite graph where the items in
Z+ are one set of nodes and the items in Z− is the other set. Letting bxy = 1/(|(Sxy ∩
Z−|) and byx = 1/(|Sxy ∩ Z+|) we can think of every edge (x, y) where x ∈ Z+ and
y ∈ Z− as having two costs: one associated with x (bxy) and the other associated with
y (byx). Thus, the cost of Z is at most the sum of all the bxy and byx costs. We can
bound the total cost by first bounding all the costs associated with a particular node. In
particular, we claim:

Claim. For any x ∈ Z+ we have

∑

y∈Z−

bxy =
∑

y∈Z−

1
|Sxy ∩ Z−| ≤ H(|Z−|)

Proof. If Z− has d items then let (y1, . . . , yd) be an ordering of Z− in reverse order
from when the items are split from x in the greedy tree (with ties broken arbitrarily).
This means item y1 is the last item split from x, yd is the first item split from x, and
in general yd−t+1 is the tth item split from x. When yd is split from x there must be
at least |Z−| items in Sxyd

— by our ordering the remaining items in Z− must still be
present — so Z− ⊆ Sxyd

. Hence bxyd
, the cost assigned to x on the edge (x, yd), is

at most 1/|(Z−)| and in general, when yt is separated from x there are at least t items
remaining from Z−, so the cost bxyt assigned to the edge (x, yt) is at most 1/t. This
means, for any x ∈ Z+

∑

y∈Z−

bxy ≤ H(|Z−|)

which proves the claim. ��

We can use the same argument to prove the analogous claim for all the items in Z−.
With these inequalities in hand we have

∑

{x,y}∈ρ(Z)

1
|Sxy ∩ Z+| +

1
|Sxy ∩ Z−| ≤ |Z+|H(|Z−|) + |Z−|H(|Z+|)

< |Z+|H(|Z|) + |Z−|H(|Z|)
= |Z|H(|Z|) (since |Z+| + |Z−| = |Z|))

��

Substituting this result into the initial inequality completes the proof of the theorem.

∑

Z∈T ∗

∑

{x,y}∈ρ(Z)

cxy ≤
∑

Z∈T ∗

|Z|H(|Z|) ≤
∑

Z∈T ∗

|Z|H(n) = H(n)C∗ ≤ (ln n + 1)C∗

��



Approximating Optimal Binary Decision Trees 7

2.1 Tests with Weights

In many applications, different tests may have different execution costs. For example, in
experiment design, a single test might be a good separator of the items, but it may also
be expensive. Running multiple, inexpensive tests may serve the same overall purpose,
but at less cost. To model scenarios like these we associate a weight w(k) with each
bit k and without confusion take w(S) to be the weight of the bit used at node S. We
call this problem DT with weighted tests (in contrast to the DT problem with weighted
items). In the original problem formulation, we can think of each test as having unit
weight, so the cost of identifying an item is just the length of the path from the root to
the item. When the tests have non-uniform weights, the cost of identifying an item is
the sum of the weights of the tests along that path. We call this the path cost. The cost of
the tree is the sum of the path costs of each item. When all the tests have equal weight,
we choose the bit which most evenly splits the set of items into two groups. In other
words, we minimize the pair cost cxy. With equal weights, the cost of an internal node
is just its size |S|. With unequal weights, the cost of an internal node is the weighted
size w(S)|S|, so assuming S separates x from y the pair cost becomes

cxy =
w(S)
|S+| +

w(S)
|S−| (4)

and our new greedy algorithm recursively selects the bit which minimizes this quantity.
This procedure yields a result equivalent to Theorem 1 for DT with weighted tests. A
straightforward implementation on this algorithm still runs in time O(mn2).

Theorem 2. The greedy algorithm which recursively selects the bit that minimizes
Equation 4 yields a (ln n + 1)-approximation to DT with weighted tests.

Proof. Following the structure of the proof for Theorem 1 leads to the desired result.
The key observation is that choosing the bit that minimizes Equation 4 yields the in-
equality

cxy ≤ w(Z)
( 1

|Sxy ∩ Z+| +
1

|Sxy ∩ Z−|

)
. (5)

Since the weight term w(Z) may be factored out of the summation

w(Z)
∑

{x,y}∈ρ(Z)

1
|Sxy ∩ Z+| +

1
|Sxy ∩ Z−|

we can apply the previous claim and the theorem follows:
∑

Z∈T ∗

∑

{x,y}∈ρ(Z)

cxy ≤
∑

Z∈T ∗

w(Z)|Z|H(n) ≤ (ln n + 1)C∗

Here C∗ =
∑

Z∈T ∗ w(Z)|Z| is the cost of the optimal tree. ��

Another natural extension to DT considers the problem with weighted items. Here, one
weights each path length by the weight of the item which defines the path. Recently,
Chakaravarthy et al. [4] extended our analysis to the DT problem with weighted items.
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3 Hardness of Approximation for ConDT under Total External
Path Length

Alekhnovich et. al. [1] showed it is not possible to approximate size s decision trees by
size sk decision trees for any constant k ≥ 0 unless NP is contained in DTIME[2mε

]
for some ε < 1. Decision tree here refers to trees of the ConDT type and the measure
is tree size. In this section we show that these hardness results also hold for ConDT
under minimum total external path length. Our theorem relies on the observation that
if I is an instance of ConDT with minimum total external path length s then I has
minimum tree size at least Ω(

√
s). If it didn’t, a tree of smaller size would have smaller

total external path length, a contradiction. The case where minimum total external path
length s corresponds to minimum size Ω(

√
s) is a cascading tree; that is, a tree with

exactly one leaf at each depth save the deepest two.

Theorem 3. If there exists an sk approximation for some constant k > 0 to decision
trees with minimum total external path length s then NP is contained in DTIME[2mε

]
for some ε < 1.

Proof. Let I be an instance of ConDT with minimum total external path length s = r2.
It follows that I has minimum tree size at least Ω(r). Now, if an sk approximation
did exist for some k then there would exist an Ω(r2k) = rk′

approximation for some
constant k′ for ConDT under minimum tree size; a contradiction. ��

4 Open Problems and Discussion

Our primary result in this paper is a (ln n+1)-approximation for the decision tree prob-
lem. The most prominent open problem is the gap between the upper and lower bounds
on the approximation ratio of DT. The best lower bound on the approximation ratio in
the unweighted items case is 2 − ε for any ε > 0 (modulo P
=NP) [4]. This improves
upon the no PTAS result from [10]. However, when the input has arbitrary weights on
the items, then the lower bound on the approximation ratio becomes Ω(log n).

Unfortunately, the Ω(log n) lower bound of Laber and Nogueira [13] for decision
trees of minimal height also does not apply to our problem. This is because height
mirrors the notion of size in set cover problems.

Amplifying the 2−ε gap using techniques from [9] for ConDT does not work for DT.
There, one squares an instance of ConDT, applies an α-approximation, and recovers a
solution to the original instance which is a

√
α-approximation. Repeating this procedure

yields the stronger lower bound. This does not work for DT because the average path
length only doubles when squaring the problem, so solving the squared problem with
an α-approximation and recovering a solution to the original problem simply preserves
(and unfortunately does not improve) the approximation ratio. The hardness results
from [1] rely on the construction of a binary function which is difficult to approximate
accurately when certain instances of a hitting-set problem have large solutions. These
techniques do not appear to work for DT either.
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The analysis of the greedy algorithm is also not known to be tight. We only know
of instances where the approximation ratio of the greedy algorithm is not better than
Ω( log n

log log n ) of optimal [7,12].
Finally, we leave as an open question the problem of approximating DT with both

arbitrary item weights and arbitrary test weights.

Acknowledgments. We thank the anonymous reviewers for their insightful and helpful
comments.
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