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Abstract

Although the Java programming language has achieved
widespread acceptance, one feature that seems sorely
missed is the ability to use type parameters (as in Ada
generics, C++ templates, and ML polymorphic func-
tions or data types) to allow a general concept to be
instantiated to one or more specific types. In this pa-
per, we propose parameterized classes and interfaces in
which the type parameter may be constrained to either
implement a given interface or extend a given class.
This design allows the body of a parameterized class
to refer to methods on objects of the parameter type,
without introducing any new type relations into the lan-
guage. We show that these Java extensions may be im-
plemented by expanding parameterized classes at class
load time, without any extension or modification to ex-
isting Java bytecode, verifier or bytecode interpreter.

1 Introduction

In Ada generics [US 80], C++ templates [ES90], and
ML polymorphic functions and data types [Mil85,
Ull94], type parameterization is used to allow a gen-
eral concept to be instantiated to one or more specific
types. For example, we may define a package or class
implementing a generic List datatype, and instantiate
it to produce lists of integers, lists of database records,
or lists of other types of objects. As borne out by ex-
perience with these and other languages, the ability
to define and instantiate a general concept is partic-
ularly useful in the design and construction of reusable
libraries. To cite a specific example, the C++ Standard
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Template Library (STL) [MS95, PSLM96] uses C++

templates extensively.
While the current Java language does not provide

any form of type parameterization, it does include a su-
pertype Object of all object types. This allows some
classes that could be written in other languages using
parametric polymorphism to be expressed using Object

in place of a parameter type. However, there are sev-
eral disadvantages of this substitute for type param-
eterization. First, the programmer must insert type
casts to change an expression with static type Object

to a more specific type. This can be an annoyance and,
since Java type casts are checked at run time, it also
leads to some decrease in execution speed. The use of
superclass Object becomes more cumbersome when bi-
nary operations (such as an ordering) are needed on
objects of the parameter type, since typing considera-
tions become more complex. Finally, use of a fixed type
Object does not allow us to capture certain generic con-
cepts that could be expressed as parameterized classes
or interfaces. For all of these reasons, we believe that it
is important to add type parameterization to the Java
language.

This paper proposes a language design and imple-
mentation. Although we considered the language design
problem from first principles, the result of our deliber-
ation and programming experiments coincides substan-
tially with other proposals [MBL97, OW97a, OW97b].
Our implementation approach, based on instantiation of
generic classes and interfaces at class load time, differs
significantly from other approaches that have been ex-
plored in any detail. This implementation technique al-
lows us to support a more expressive form of parameter-
ized classes than competing implementation techniques.
It may also be considered an alternative implementation
mechanism for related language design proposals.

The Java language extensions that we consider allow
classes and interfaces to be defined using type param-
eters that may be instantiated with classes, interfaces,
or primitive types. To enable classes to refer to the



methods of objects from a parameter type, each type
parameter may be assumed to implement a given in-
terface or extend a given class. This reuse of existing
Java type relations extends and implements to con-
strain type parameters reduces the number of new con-
cepts added to the language. This is essentially similar
to the design used in [OW97b], also based on so-called
F-bounded quantification [CCH+89, Mit96].

Our implementation technique adds a preprocess
phase to the Java Virtual Machine loader. The prepro-
cessor instantiates parameterized classes at class load
time to achieve a balance between pre-run-time expan-
sion (for expressive power and run-time efficiency) and
minimization of compiled (or transmitted) code size.
We have implemented a prototype version of the loader
preprocessor using approximately 500 lines of Java code.
While it was necessary to make one small change to the
Java Virtual Machine loader in order to invoke our pre-
processor at the correct time, this small change could
be incorporated into future versions of the Java Vir-
tual Machine without affecting backwards compatibil-
ity. More importantly, it is not necessary to change
the verifier or bytecode interpreter. This is significant
since many of the security and portability properties of
Java are tied to the design of these parts of the virtual
machine.

To summarize, our goals in adding type parameters
to the Java language are:

• Allow common parameterized classes to be pro-
grammed easily. We are more interested in mak-
ing it easy to handle common, useful cases than in
maximizing absolute language expressiveness.

• Avoid introduction of extraneous concepts into the
Java language, where possible.

• Support separate compilation. In keeping with the
Java emphasis on security, it should be possible to
check each compilation unit separately for consis-
tency and type correctness.

• Implement the extended language with as few
changes to the virtual machine as possible. In par-
ticular, avoid any changes in the Java bytecode,
Java verifier, or bytecode interpreter.

• Maintain static type checking insofar as possible.
In particular, eliminate the need for programmers
to write casts, minimize associated run-time costs,
and avoid introduction of additional constructs
that would increase the use of run-time tests to
preserve type safety.

We review type parameterization in other languages
in Section 2 and describe four representative and in-
creasingly difficult “benchmark” program examples.

In Section 3 we summarize relevant features of the
existing Java language and outline how the lack of
type parameterization requires work-arounds for each
of the four program examples. Then, in Section 4, we
present our language extension. Section 5 presents our
preprocessor-based implementation technique and de-
scribes a prototype that we have built to validate our
ideas. Section 6 compares our design and implemen-
tation with related proposals, while Sections 7 and 8
outline directions for future work and conclude.

2 Parameterized Classes

Many programmers are familiar with generic program
units, as supported by Ada generics [US 80], C++ tem-
plates [ES90], and ML functors, polymorphic functions,
and data types [Mil85, Ull94]. In brief, each of these
constructs provides some mechanism for treating a pro-
gram unit as a “generic abstraction” that can be in-
stantiated for specific choices of actual type parameters
and function parameters. To give a familiar example,
a generic C++ Vector class may be defined as follows
[ES90]:

template <class T> class Vector {

T* v;

int size;

public:

Vector(int);

T& operator[](int);

T& elem (int i){return v[i];}

// ...

}

For any class C, the class Vector<C> is a class of vec-
tors of C objects, determined by instantiating the class
Vector with actual class C in place of the formal pa-
rameter T in the definition above. Parametric polymor-
phism seems to have originated with the design of CLU
[L+81], which allows procedures and clusters (approx-
imately analogous to Ada packages or ML structures)
to be parameterized by types. The prevalence of type
parameterization across a wide variety of programming
languages provides some evidence for the general appli-
cability and power of this concept.

2.1 Compiling Parameterized Classes

Any type parameterization mechanism will involve both
a technique for compiling parameterized constructs and
a mechanism or set of conventions for using specific in-
stances of a generic construct. We discuss the general
issues that arise in any language using parameterized
classes as an example. However, the main points ap-
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ply to parameterized interfaces or other parameterized
entities as well.

In many cases, it is necessary for a parameterized
class to invoke methods on objects of the parameter
type. This does not occur with certain “container”
classes, such as List or Vector, but arises in the im-
plementation of priority queues, for example, since it is
necessary to have an ordering on the elements inserted
into a priority queue. Such method invocations raise the
question of how to ensure type safety. More specifically,
we must be able to ensure that methods invoked on ob-
jects whose types are parameters are actually defined on
the types with which the parameters are instantiated.

Four representative examples may be used to illus-
trate some of the challenges involved in designing an
expressive type parameterization mechanism. In order
of increasing complexity, these are:

Stack class: Like vectors, lists, and other simple con-
tainer classes, stacks of T objects may be imple-
mented without invoking any methods on objects
of type T.

Hashtable class: In implementing a hash table, it is
necessary to obtain a hash code for each object
inserted in the table. For the purposes of illus-
tration, we assume that objects have a hashCode

method returning an integer.

PriorityQueue class: This is similar to Hashtable,
since a priority queue of T objects requires a
method on T objects. However, the type of the
method is more complicated, since the method
must provide a binary relation that would be as-
sumed to be a linear order.

“mix-in,” a term we use for a parameterized class
that uses a type parameter as a base class.
An example is a generic construct that adds
methods notEqual, greaterThan, lessEqual,
and greaterEqual to any class with equal and
lessThan methods. In a parameterized class of
this form, it may be necessary to assume that cer-
tain binary methods are provided by the actual
parameter class.

The increasing complexity of these examples is re-
ally a measure of the complexity of the way in which
the parameterized classes use the type parameters. The
Stack class performs no operations on instances of the
parameter class and does not need to make any assump-
tions about the type parameter. The Hashtable and
PriorityQueue classes invoke methods on instances of
a type parameter class and therefore must ensure that
these methods are defined and have the appropriate
types. Finally, mix-ins, the most complex example, use

the type parameter as a superclass. This will generally
require information about the methods and construc-
tors associated with the type parameter.

All of these examples may be programmed in our
extension of the Java language. However, the last one
is not possible in some of the competing proposals de-
scribed in Section 6. There are also differences regard-
ing the use of constructors and static variables, as dis-
cussed in Section 2.2 below and in more detail in Sec-
tion 6.

2.2 Instances of Generic Classes

Once we have defined a generic construct, such as a
parameterized List class, we may wish to write a pro-
gram with several specific types of lists, such as lists of
integers and lists of employee record objects. We re-
fer to each class name, such as List<int>, List<Emp>,
or List<Color>, obtained by specifying an actual type
parameter, as a syntactic instance of the parameterized
class List. In any implementation of generic classes,
it will be necessary to decide how to represent objects
of type List<int>, List<Emp>, and List<Color>, and
whether to generate separate code for methods associ-
ated with objects of these types.

In some languages, it may be possible to use the
same implementation (code and static variables) for all
syntactic instances. For example, if list cells are rep-
resented appropriately, with pointers to data (instead
of the data itself) in each cell, then it may be possible
to use the same representation and compiled operations
for all types of lists. This is done in ML, for example.
We refer to the situation where all instances of a pa-
rameterized construct share the same implementation
as a homogeneous approach, following the terminology
of [OW97b].

Alternatively, parameterized classes could be im-
plemented heterogeneously, with different syntactic in-
stances resulting in different run-time representations
or different compiled code for methods. This is gener-
ally the case for C++ , for example. In a heterogeneous
implementation, we refer to the data structure and com-
piled code associated with a specific syntactic instance
of a generic class as a semantic instance, or instantia-

tion, of the class. In general, semantic instances might
be instantiated at compile time, link time, or run time.
While a heterogeneous implementation may result in
larger code size, a heterogeneous strategy makes it pos-
sible to support type parameterization in a language
where it is not feasible to represent or refer to values of
all types in a uniform way.

Since it is related to some of the subsidiary design
decisions we discuss in this paper, we note that there
are some interactions between compilation of generic
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class Stack {

void push(Object o) { ... }

Object pop() { ... }

...

}

String s = "Hello";

Stack st = new Stack();

st.push(s);

...

s = (String)st.pop();

class Stack<A> {

void push(A a) { ... }

A pop() { ... }

...

}

String s = "Hello";

Stack<String> st = new Stack<String>();

st.push(s);

...

s = st.pop();

Figure 1: Java code for a generic Stack class: versions without and with parameterized classes.

classes and the eventual creation of semantic instances.
For example, C++ templates are compiled without stat-
ically checking the use of member functions, in part be-
cause of the complexity of determining in advance how
a reference to a function might be eventually resolved.
Instead, type checks are made later, at link time, when
the actual type parameter is determined and a semantic
instance is created.

The choice between homogeneous and heterogeneous
implementation strategies is often determined by lan-
guage semantics. For example, consider a parameter-
ized class that defines a static variable. If the semantics
specify that each instance of the parametric class gets
its own location for the static variable, it may be more
straightforward to use a heterogeneous implementation
strategy. On the other hand, if the semantics specify
that all instances should share a single location for the
static variable, a homogeneous implementation strategy
may be a better choice (with respect to this particular
aspect of parameterized classes).

3 The Java Programming Language

Since the Java language has received considerable at-
tention, we assume that most readers have at least a
passing acquaintance with it. The main features of
the Java language that are relevant to our proposal
are: the presence of interfaces and classes, the absence
of type parameterization, the fact that type casts are
checked at run time (to ensure type security), and, for
our implementation, the architecture of the Java Vir-
tual Machine. These features are documented in stan-
dard Java language reference books such as [AG96]. We
also review the architecture of the Java Virtual Ma-
chine briefly in Section 5 and summarize other features
in passing as needed.

In the following subsections, we discuss alternative

programming techniques that may be used to work
around the lack of type parameterization when solv-
ing the four representative problems from Section 2.1.
The purpose of this discussion is to motivate our specific
combination of language extension and implementation
technique, as well as to provide a basis for comparison
with various alternatives. In particular, the first three
examples may be written in the other extensions de-
scribed in Section 6. However, the last example, which
is expressible in our extenstion, cannot be written and
implemented properly by some of the other proposals.
The main difference here is not the form of the language
extension, but our heterogeneous implementation tech-
nique.

3.1 Stack

Without type parameterization, it is possible to write
a Java Stack class using the fact that all classes are
subclasses of Object. A typical approach is shown on
the left in Figure 1.

This Stack class defines two essential operations:
push places an object on the stack, and pop removes
and returns the top object. The type Object occurs in
two places: for the argument of the push method and
for the result of the pop method. While the type of
push is very generous, allowing any type of object to
be added to a stack, a price is paid when the object
is removed. Specifically, since the return type of the
pop method is just Object, it is only possible to invoke
methods from class Object on an object removed from
a stack, even though the object may have additional
methods. It is possible to cast an object removed from
a stack to a more specific type, but this action requires
either that the type be known to the programmer or
that some test be performed to determine the type. In
addition, to ensure type safety, the Java compiler in-
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serts a run-time test with such a cast, causing some
performance penalty.

In the best-case scenario for the current Java lan-
guage, a programmer really wants heterogeneous stacks
containing many types of objects and, before invoking
certain methods, must cast objects removed from stacks
to more specific types.

In the worst-case scenario, however, a programmer
defines a stack class as above, and builds stacks with
every element drawn from some specific type, such as
String. Then, in spite of the fact that the program only
builds homogeneous stacks, it must contain casts and
run-time type tests to verify something already known
to the programmer. These casts can be avoided by using
a parameterized class, as shown on the right of Figure 1.

3.2 Hashtable

To define a general Java Hashtable class without
type parameterization, we define an interface Hashable
which asserts that objects with this interface have a
hashCode method. Then, to use objects of some type
as keys for a hash table, the class of these objects must
explicitly be declared to implement the Hashable in-
terface. Moreover, the cast issues described above for
stacks remain for Hashtable. This approach can be
compared with the parameterized hash table class de-
scribed in Section 4 and given in Figure 2.

3.3 Priority Queue

A priority queue is a data structure that allows inser-
tion and removal of objects of some type T. The objects
must come from a linearly ordered set so that removal
may return the minimum of all the elements stored in
the data structure. The ordering, which we assume is
provided by a lessThan method, poses certain prob-
lems in writing a generic priority queue class. A specific
complication is that the lessThan method on objects of
type T takes another object of type T as an argument.
However, this type dependence cannot be expressed in
Java without type parameterization. It is possible to
work around the problem by assuming that each object
to be inserted into the queue has a lessThan method
that accepts any object as a parameter. However, the
work-around sacrifices compile-time type checking and
is cumbersome: the lessThan method must perform a
run-time type check to make sure that the argument ac-
tually has the correct type. (See [BCC+96] for further
discussion.) We demonstrate how a priority queue may
be written with our language extension after we present
the required syntax in Section 4.

3.4 Mix-in

For examples such as a generic “mix-in” class that adds
operations to a class provided as a parameter, there
does not appear to be any reasonable approach short
of parameterized classes. Figure 4 in Section 4 demon-
strates a generic mix-in class.

4 Language Design

4.1 Java Language Extensions

In our extension to the language, parameterized classes
have the following general form:

class C< parameters > {

...

}

where parameters is a list of type variables, each of
which may be constrained or unconstrained. Interfaces
can be parameterized in the same way. The type vari-
ables, which represent unknown classes, interfaces, or
primitive types, may be used inside the declaration of
C wherever a type name is allowed to appear.

Constraints on type variables have two forms,
implements and extends clauses. These concepts, al-
ready familiar to Java programmers, have the following
intended meanings:

• A implements I: The parameter A is either a class
which implements I or an interface which has I as
a superinterface.

• A extends B: The parameter A is a class which is
derived from B in the implementation hierarchy.

A similar syntax is used in [OW97b], where a BNF
grammar, formal typing rules, and other syntactic is-
sues are considered. The main difference between our
proposed language extension and Pizza lies the way that
our heterogeneous implementation may be used to sup-
port certain uses of type variables that Pizza disallows.
These differences are discussed in Section 6.

Figure 2 demonstrates the use of constraints to spec-
ify that the Key parameter for Hashtable must im-
plement a certain interface. The Key argument is
constrained to only those classes that implement the
Hashable interface, ensuring that the Hashtable code
can invoke the hashCode operation on the keys. In con-
trast, no specific operations are required on the values
inserted in the hash table, so the Value parameter is
unconstrained, and any type will suffice.

In general, a parameterized class may be statically
type checked by the compiler using the constraint
information about the parameters. However, there
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interface Hashable {

int hashCode();

}

class Hashtable<Key implements Hashable, Value> {

void insert(Key k, Value v) {

int bucket = k.hashCode();

insertAt(bucket, k, v);

}

void insertAt(int bucket, Key k, Value v) { ... }

...

}

class Name implements Hashable {

int hashCode() { ... }

...

}

Hashtable<Name, Integer> h1 = new Hashtable<Name, Integer>();

Hashtable<Name, Point> h2 = new Hashtable<Name, Point>();

Name n = new Name("Hello");

h1.insert(n, new Integer(2));

h2.insert(n, new Point(0));

Figure 2: A parameterized Hashtable class and instantiations.

are several situations in which the constraints do
not express enough information to guarantee that all
possible instantiations will conform to all the existing
rules of the Java language. For example, when a type
variable is constrained to extend a class, the actual
parameter must be a class since Java interfaces cannot
extend classes. In the following code example,

class C<A> extends A {

void f() {

A a = new A();

}

}

the actual parameter A must be a class because it is
used as a base class. In this case, A must also be a
class because the method f creates an object of type A.
Similarly, since the extension of an interface must be an
interface, the following code,

interface I<B implements J> extends B {

...

}

implies that B is an interface with superinterface J.
The Java typing rule for method overloading creates

another similar restriction. Consider the following class
declaration:

class L<A> {

void m(A s) { ... }

void m(String s) { ... }

}

The class overloads the method name m to operate either
on a string or an instance of the formal type parameter
A. In this situation, the instantiation L<String> must
be rejected because it leads to a class defining two meth-
ods with the same signature m(String).

In practice, situations that impose such additional
restrictions on actual type parameters occur rarely.
They can be statically determined and checked for each
instantiation by the compiler. We do not expect them
to be difficult for programmers to understand because
they all arise from the unsurprising rule that “an in-
stantiation of a parameterized class must conform to
all the rules for regular (non-parameterized) classes.”

4.2 Discussion

This type parameterization mechanism meets our pri-
mary language design goals. As previously mentioned,
the extends and implements constraints are based on
concepts already present in the Java language. This
should make these constraints readily understandable
and easy to use by any Java programmer.
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interface Comparable<I> {

boolean lessThan(I);

}

class PriorityQueue<T implements Comparable<T>> {

T queue[];

void insert(T t) {

...

if (t.lessThan(queue[i])) ...

...

}

T remove() { ... }

...

}

Figure 3: A parameterized PriorityQueue demonstrating the declaration and use of a covariant method.

interface LessAndEqual<I> {

boolean lessThan(I);

boolean equal(I);

}

class Relations<C implements LessAndEqual<C>> extends C {

boolean greaterThan(Relations<C> a) {

return a.lessThan(this);

}

boolean greaterEqual(Relations<C> a) {

return greaterThan(a) || equal(a);

}

boolean notEqual(Relations<C> a) { ... }

boolean lessEqual(Relations<C> a) { ... }

...

}

Figure 4: A mix-in class to add additional relations to any class defining lessThan and equal relations.
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The parameterization mechanism is also quite ex-
pressive. In addition to the examples already discussed,
covariant method constraints can be described. (A
covariant method is one which takes an argument of
the same type as the class in which the method is de-
fined; see [Cas95] for a detailed discussion.) The binary
lessThanmethod of the priority queue described in Sec-
tion 3.3 is a covariant method. Figure 3 shows how this
type of relation may be expressed in our language ex-
tension. An even more complex example is shown in
Figure 4. The mix-in class defined in the figure not
only specifies the existence of covariant methods for its
parameter type, but it also inherits from the parameter.

Parameterized classes and interfaces can be stati-
cally type checked using the constraints associated with
the parameters. This kind of static checking has been
implemented in the Pizza compiler [OW97b] and also
the Rapide compiler [KLM94], now in use for several
years.

4.3 Primitive Types

Our design is sufficiently flexible to allow instantiation
with primitive types such as int and float. However,
since primitive types do not implement or extend any
classes or interfaces, they can only be used for uncon-
strained parameters. Also, the resulting instantiations
must adhere to all Java type rules relating to primitive
types. For example, the class Stack<int> is valid, but
Hashtable<int, float> is not since the primitive type
int does not implement the Hashable interface. While
allowing instantiation with primitive types enhances ex-
pressiveness, it, comes at a cost in implementation com-
plexity, as discussed in Section 5.3.

To allow basic types to be used where class types
are required, the Java class library defines “wrapper”
classes for primitive types [AG96, §13.3]. These wrap-
pers can also allow primitive types to be used as actual
parameters to classes that only allow instantiation with
class or interface types.

4.4 Extended Constraints

While the syntax used in this paper allows only
one constraint per type parameter, it is essentially
straightforward to allow combinations of constraints.
For example, we could use the form

class C<A implements I extends B>

to require A to both implement interface I and extend
class B. For longer constraints, it seems more conve-
nient to write constraints after the parameter list, as is
customary with where clauses [LSAS77].

5 Implementation

To set the context for a discussion of our implementa-
tion technique, Figure 5 shows a schematic diagram of
the Java Virtual Machine. When a running program
refers to a class that has not been loaded, compiled
bytecode passes through three largely independent com-
ponents of the virtual machine. The loader obtains the
bytecode for the class from either a local file or a remote
site. The verifier validates the bytecode by checking
that operation codes are valid, branches are to legiti-
mate locations, methods have structurally correct sig-
natures, and that every instruction obeys the Java type
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discipline. Finally, the linker initializes static fields of
the new class and may load related classes. Further
information may be found in [LY96].

It is possible for Java programs to modify the be-
havior of the loader on certain classes by extending
the Java ClassLoader class. For example, while the
default loading mechanism searches the local file sys-
tem for classes, an alternate ClassLoader could obtain
classes over the network.

Parameterized classes can be implemented with-
out changing the Java Virtual Machine. Homoge-
neous implementations, such as those described in
[OW97b, Tho97], represent a type variable as a general
type, such as Object, and use run-time casts to pro-
vide the appropriate functionality for different instanti-
ations. Some limitations of this strategy are discussed
in more detail in Section 6.

In order to overcome these limitations, we propose
a heterogeneous implementation based on load-time ex-
pansion. This choice is attractive for Java systems for
the following reasons:

• Expanding parameterized classes to a form used
by non-parameterized classes allows current Java
Virtual Machine verifiers, interpreters, and just-in-
time compilers to remain unchanged. In addition
to retaining compatibility, we also avoid security
and other issues that would arise if we changed the
Java execution model.

• Postponing expansion from compile time to load
time reduces the size of compiled code. This could
be significant when compiled code is transmitted
over a network.

The general strategy is to compile a parameterized
class into an extended form of the class file. In addi-
tion to all the information usually found in a class file,
the extended file includes information about parameters
and constraints. When the virtual machine attempts
to load an instantiation of a parameterized class or in-
terface, a loader preprocess phase transforms the pa-
rameterized class file into the desired instantiation and
then declares it as if it were a normal class. In other
words, one “template” class file is used to generate reg-
ular, non-parameterized Class objects for each instan-
tiation of a parameterized class. For example, the con-
tents of the Hashtable.class file is used by the loader
to generate both the Hashtable<Name, Integer> and
Hashtable<Name, Point> classes.

The rest of this section describes our implementa-
tion technique in more detail. Section 5.1 outlines the
Java class file format. Section 5.2 describes our prepro-
cessor, focusing on the transformation used to instan-
tiate a parameterized class with a class or an interface.

Then, Section 5.3 sketches instantiation with primitive
types. Section 5.4 discusses advantages and disadvan-
tages of this implementation technique, and Section 5.5
describes a prototype implementation and our experi-
ence with it.

5.1 Java Class Files

A class file is a binary representation for a compiled
class that can be loaded by any Java Virtual Machine.
The major pieces of the class file are a header, starting
with a distinguishing magic number, a constant pool,
and a description of the fields and methods in the class.
This format is summarized in Figure 6 and discussed in
detail in [LY96].

The constant pool contains strings representing all
names mentioned in the class file, including class names,
field and method names, type names, and so on. The
index of an entry in the constant pool is used wher-
ever that constant is needed in the class file. The Java
Virtual Machine uses these strings for many operations
including type checking, dynamic linking, and run-time
resolution of field and method names. For example, Fig-
ure 7 shows some Java bytecodes and the corresponding
program text. The #4, #5, and #6 in the bytecodes refer
to entries in the constant pool, and the text printed af-
ter these numbers are the strings stored in the constant
pool.

5.2 Load-Time Expansion

One very convenient aspect of the class file format is
that most type information generated when a class
is compiled is stored in its constant pool as strings.
The only exception is type information about primi-
tive types, such as integers, which is embedded directly
into the bytecode instructions (see Section 5.3).

To support load-time instantiation of parameterized
class files, we propose an extended class file format,
as shown in Figure 6. The file begins with a unique
identifying number different from the standard class
file magic number. Following this are the argument
constraints, whose form is also shown. The format of
the constraints is straightforward. The one constraint
generated by our Hashtable example is:

1

implements

“Hashable”

If we were to allow multiple constraints on each type
parameter, the constraint format could be adapted
straightforwardly.

9



with Placeholders

Constant Pool

Header

0xCAFEBABE

Type Information

and

Bytecodes

Constraint
Argument Number

Constraining Type

implements/extends

Parameterized
Class File
0x12345678

Constraint Count

Argument CountHeader

Constant Pool

and

Type Information

Bytecodes

0xCAFEBABE

Class File

Constraints

Figure 6: The original class file format, extensions for parameterized classes, and the format of a constraint.

class A {

int i;

void increment() {

set(i + 1);

}

void set(int value) {

i = value;

}

}

A a;

a.increment();

Method void increment()

aload_0

aload_0

getfield #5 <Field A.i I>

iconst_1

iadd

invokevirtual #6 <Method A.set(I)V>

return

Method void set(int)

...

aload_0 /* push a onto stack */

invokevirtual #4 <Method A.increment()V>

Figure 7: Sample Java class and bytecodes
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The entire binary representation for the parameter-
ized class follows after the constraints. The only dif-
ference between this section and a standard class file is
that special placeholders take the place of type names
wherever parameters are used in the constant pool. In
this paper, we will use $1, $2, etc. for these placehold-
ers, but they can be any strings not appearing in the
constant pool entries containing type information in a
standard class file.

As discussed earlier, the Java Virtual Machine loads
and links classes dynamically. The operations per-
formed when a ClassLoader loads a class (or an in-
terface) are:

• Fetch the bytes in the binary representation of the
required class, perhaps from a file or over the net-
work.

• Pass the bytes into the virtual machine to have
them verified and turned into the virtual machine’s
internal representation of classes. This step pro-
duces a Class object.

All loaded classes are stored in a table so that they can
be used again without reloading.

The design of the loader provides a great deal of flex-
ibility in the way the binary representation of a class is
located. We take advantage of this flexibility by aug-
menting the existing Java loader to create instantiations
of parameterized classes. The steps involved in this
process are listed below. Note that non-parameterized
classes continue to be loaded in the usual manner. The
steps to load an instantiation are:

• Convert the name of the class into a parameterized
class name and argument names.

• Translate the argument names to class and inter-
face types. This may involve loading other class
files.

• Find the file containing the binary representation
of the parameterized class and read it into memory.

• Check the parameter constraints against the argu-
ments. If a constraint is violated, raise an excep-
tion.

• If the instantiation is valid, generate the binary
representation of the instantiation from the pa-
rameterized class file and arguments; proceed in
the usual manner to create a Class object for it.
The bytecode verification process will ensure that
the few remaining type checks described in Sec-
tion 4.1 are performed.

Since the Java Virtual Machine specification
does not allow class names of the syntactic form

Hashtable<Name, Integer>, the compiler and
ClassLoader must rewrite parameterized class names
into a valid form. (This is similar to the way that inner
class names are mapped onto the flat name-space of
the virtual machine [Jav96]).

The heart of the implementation, when instantiat-
ing a parameterized class with a class or interface type,
is the algorithm for transforming a parameterized class
file into binary representations for different instantia-
tions. For each parameter, we replace each occurrence
of its placeholder with the actual argument’s name in
the constant pool. Figure 8 shows an example of this
replacement method.

Once the replacements are made, the binary repre-
sentation for the instantiation can be treated by the
loader, verifier, and interpreter just as if it were an un-
parameterized class.

5.3 Instantiation with Primitive Types

The implementation technique described above does
not work for instantiating classes with primitive types
since different bytecodes are used for different primitive
types. For example, the bytecode instruction for in-
teger addition is different from the instruction for real
addition. A load-time preprocessor can support instan-
tiation with primitive types by modifying the bytecode
instructions for parameterized classes. However, this is
clearly a more complex transformation than required
for class or interface arguments.

5.4 Discussion

By delaying instantiation until load time, we are able to
achieve many of the stated design goals. Since the byte-
code verifier and interpreter remain unaffected, type
correctness and other properties of Java program ex-
ecution are not compromised.

Our class file format for parameterized classes al-
lows for separate compilation of a parameterized class
and programs which create instances of it. Once the
parameterized class file has been generated, a check
against the constraints stored in that file guarantees
type correctness of an instantiation, except for a few
situations in which there is insufficient information in
the constraints to guarantee this. As mentioned in Sec-
tion 4.1, these cases can be checked by the compiler,
but they must also be checked at load time since the
Java Virtual Machine cannot assume all programs orig-
inate from a trusted compiler. We rely on the existing
run-time bytecode verification process to catch these
instantiations that conform to the declared constraints
but are not valid classes.
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Hashtable<$1,$2>.insert method:
Method void insert($1,$2)

aload_1

invokevirtual #6 <Method $1.hashCode()I>

istore_3

aload_0

iload_3

aload_1

aload_2

invokevirtual #7 <Method Hashtable<$1,$2>.insertAt(IL$1;L$2;)V>

return

Hashtable<Name,Integer>.insert method:
Method void insert(Name,Integer)

aload_1

invokevirtual #6 <Method Name.hashCode()I>

istore_3

aload_0

iload_3

aload_1

aload_2

invokevirtual #7 <Method Hashtable<Name,Integer>.insertAt(ILName;LInteger;)V>

return

Figure 8: Java bytecodes for the insert method as it appears in the Hashtable parameterized class file, and
the same method instantiated as Hashtable<Name, Integer>.insert. The italicized names would be replaced by
“mangled” names conforming to the rules for Java class names.

Load-time instantiation provides size and speed
tradeoffs that are consistent with the rest of the Java
system. The existence of only a single compiled class file
for all instantiations of a parameterized class makes bi-
nary representations compact on disk and furthermore
allow efficient distribution of Java classes over a net-
work. At run time, there is some memory consumption
increase, compared with a homogeneous implementa-
tion, because a new class is generated for each instan-
tiation. Most Java Virtual Machines in use today do
not share data structures between similar classes (such
as the classes resulting from multiple instantiations of
a parameterized class), leading to a memory demand
increase proportional to the number of instantiations of
the parameterized class. We have no absolute numbers
yet, and cannot obtain such numbers until we have a
better understanding of the extent to which parameter-
ized types will be used in typical Java applications, but
we expect that the memory increase will be small rel-
ative to the memory requirements for the system as a
whole. This expectation seems to be confirmed by other
systems, such as C++ and Ada, that use heterogeneous
implementations of parameterization mechanisms.

Compared with a homogeneous implementation,
load-time instantiation of parameterized classes in-
creases the time spent loading classes during program

execution, but in exchange enables faster execution be-
cause the resulting classes often contain fewer run-time
type checks. Based on our preliminary tests and analy-
sis of Java programs, we expect both the slow-down and
the speed-up effects to be relatively small and have little
impact on overall performance. Most Java applications
today spend little time loading classes and performing
run-time type checks.

It is important that the bytecodes produced for a
parameterized class instantiation match the intended
semantics of that language feature. For example, one
would expect that adding an Integer object to the
Stack<String> object in Figure 1 would be a type er-
ror, meaning that the bytecode verifier and interpreter
should not allow that operation at run time. If it were
allowed, a potential security problem would exist. Since
parameterized class files are instantiated with the ac-
tual type parameters, our implementation prevents in-
correct operations like this. However, implementations
in which type variables are represented by a more gen-
eral type than specified by the instantiation declaration
may in fact compromise the language semantics in this
way. This is true of some of the homogeneous imple-
mentations discussed in Section 6.

The idea of using a load-time preprocessor to expand
parameterized classes is a general implementation tech-
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Language Extension Implementation
Type Parameters Instantiations use Instantiations use

Proposal Constraints No Inher- Shared Code Separate Code
implements/ new type Con- itance Shared Separate Compile- Load-

extends relation straints type info type info time time

Pizza X X

where Clauses X X

C++ X X

Virtual Types X X

This Paper X X

Figure 9: A summary of the language extensions and implementation techniques described in the different proposals.
C++ is included as a reference point.

nique. It can be used to implement other proposals for
type parameterization, as long as their semantics can be
realized by a heterogeneous implementation. The pre-
processor could also be used to experiment with other
language features in the context of Java systems.

We have found the Java bytecode format to be an
attractive representation when developing systems that
use load-time expansion. The Java bytecode format
offers architecture independence and a much higher ab-
straction level compared to more traditional systems,
such as the C++ compile-time or link-time template
instantiation that operates on machine code. The level
of abstraction is particularly important when it may be
necessary to report errors at instantiation time. With-
out high-level format and type information, it can be
difficult to detect and report errors in a meaningful way
(i.e., relate them to the source code).

5.5 A Prototype Implementation

A prototype of the virtual machine extension described
in Section 5.2 has been implemented and tested using
Sun’s JDK 1.0.2 source release. While a full compiler
for parameterized classes has not been implemented,
this prototype is sufficient to test the effectiveness of
load-time instantiation. The implementation consists
of approximately 500 lines of Java code and a ten line
change to the default loader in the Java Virtual Ma-
chine. A successful prototype was built as a subclass
of the ClassLoader class, but we found that this was
too restrictive for general use since we could not install
that ClassLoader as the default for the Java Virtual
Machine. Therefore, we made one minor change to the
underlying default loader to make it recognize parame-
terized classes. Although this prototype makes several
minor assumptions (such as “ ” not appearing in any
class name and that all classes are loaded by the same
ClassLoader), it is clear that the changes to Java’s run-
time environment are very straightforward and isolated
to one small section of the virtual machine. In a later

implementation, we plan to remove the limitations on
the existing version and to add primitive type argu-
ments, which were also left out of the original proto-
type.

In addition to creating parameterized class files
for all examples in this paper, we have taken sev-
eral classes from the java.util package, such as
java.util.Hashtable, and transformed them into pa-
rameterized classes. Making these new classes required
virtually no change to the existing code other than re-
placing Object with the parameter identifiers, $1, $2,
etc., and inserting constraint information at the top
of the class files. The run-time speed of the parame-
terized versions of these classes improved slightly. To
cite one specific example, a program which populated a
java.util.Hashtable and then performed one million
lookup operations increased in speed by 2–3% when the
hash table was replaced by our parameterized version
of it.

6 Related Work

There have been several other proposals for adding
parameterized types or generic classes to Java. Al-
though it may appear that the language extensions
from these proposals are equally expressive and that
the different implementation strategies are more or less
equal in power, fundamental differences do exist be-
tween them. This section discusses the other proposed
designs, touching on the distinguishing features, as well
as potential advantages and disadvantages, of each. The
language and implementation choices of all proposals
described below are summarized in Figure 9.

6.1 where Clauses

One proposal, described in [MBL97], presents a Java
extension similar to where clauses in CLU [LSAS77].
There are several semantic differences between that con-
straint mechanism and the ones used in both Pizza (dis-
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class BroadcastList<C extends Channel> {

C channels[];

void add(C c) { ... }

void broadcast(String s) {

int i;

for (i = 0; i < channels.length(); i++)

channels[i].send(s);

}

...

}

class EncryptedChannel extends Channel;

class UnencryptedChannel extends Channel;

BroadcastList<EncryptedChannel> list = ...;

list.add(new EncryptedChannel());

(*)

list.broadcast("Hello");

Figure 10: A list of EncryptedChannels that could be attacked by handwritten bytecodes to add an
UnencryptedChannel if C does not contain the exact type of the argument for each instantiation.

cussed below) and this paper. On the positive side,
where clauses allow the programmer to state that a
class conforms to a certain constraint without explic-
itly declaring the relationship when the class is defined.
In our Hashtable example, where clauses would allow
the programmer to use any class that has a hashCode

method as the Key instead of just those declared to
implement the Hashable interface. If only existing
Java constructs for subtype relations are used, namely
implements and extends, this type of constraint can-
not be expressed. However, since this problem in Java
arises in situations outside of parameterized classes, it
seems more reasonable to solve this problem for Java
as a whole instead of introducing a new type relation
only in the context of parameterized class constraints.
Section 7 describes two possible Java extensions that al-
low subtyping relations to be declared without changing
class declarations.

The main implementation described in [MBL97] for
where clauses changes the bytecodes and virtual ma-
chine significantly in order to allow shared code, but
separate constant pool information, among instantia-
tions of a parameterized class. This makes the imple-
mentation more costly and the virtual machine more
complicated than our method. Any change to the byte-
codes and bytecode verifier will require all safety and se-
curity aspects of the system to be reevaluated. Clearly,
this could be an undesirable and daunting task. An
implementation based on load-time instantiation would
be possible for where clauses by adding more forms of
constraints to those described in Section 5.

6.2 Pizza

Pizza [OW97b] is another parametric class extension
using a constraint mechanism based on F-bounded
quantification [CCH+89] and the extends and
implements type relations. However, the type param-
eters in Pizza are prevented from appearing in certain
places were class names may appear. For example, two
errors occur in the following program when compiled
in Pizza [OW97a]:

class List<A> {

static A a; // not allowed in Pizza

void newA() {

A a;

a = new A(); // not allowed in Pizza

}

}

Both statements would be allowed in our implementa-
tion and the where clause approach of [MBL97]. An-
other restriction is that a class cannot inherit from a
parameter, making mix-ins impossible to express.

Although these limitations may result from a differ-
ent model of parametric types, the homogeneous imple-
mentation used by the Pizza compiler makes these fea-
tures difficult, if not impossible, to implement. Pizza
creates a single class file for each parameterized class.
This class represents each type argument as the most
general possible type for that argument. The com-
piler then inserts casts into the bytecodes that use in-
stances of a parameterized class to ensure type correct-
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ness. These casts are similar to those discussed in the
context of the Stack class and other examples in Sec-
tion 3, but are added by the compiler instead of by the
programmer. This strategy does allow the Java Virtual
Machine to remain unchanged, but it clearly limits how
type variables can be used and also still requires run-
time casts. Our implementation does not have these
limitations since the instantiation of a parameterized
class replaces type variables with the actual type of an
implemented class, allowing type variables to appear
wherever a class name may appear.

It is also worth keeping the security implications of
each implementation technique in mind. If the type
used in the place of a parameter is more general than
the actual argument type in an instantiation, as it is
in Pizza, there is the possibility that hand-coded byte-
code could take advantage of this discrepancy. Specifi-
cally, compiler type checking and the compiler-inserted
run-time checks guaranteeing type safety when param-
eterized types are used could be circumvented by using
bytecodes not generated by the Pizza compiler.

For example, someone may be able to insert an
unencrypted channel into a list of encrypted chan-
nels used by a library for secure communication, as
shown in Figure 10. In Pizza, the EncryptedChannel

instantiation of BroadcastList would use bytecodes
based on C having the type Channel, meaning
BroadcastList<EncryptedChannel>.add would take
an argument of type Channel. If we manually in-
serted bytecodes to add an UnencryptedChannel ob-
ject to list at position (*), there would be no
way to catch this error in the bytecode verifier or
at run time since an UnencryptedChannel is a sub-
type of Channel. The only way to prevent this
is to give BroadcastList<EncryptedChannel>.add

a type where the parameter can only be an
EncryptedChannel.

As discussed in [DFW96], it is very important that
the semantics of the Java language matches the seman-
tics of the generated bytecode instructions. In that pa-
per, the authors discuss a situation where valid byte-
codes are able to perform an action prohibited by the
language. A similar situation occurs in Figure 10. Byte-
codes that are seemingly valid to the Java Virtual Ma-
chine do in fact perform an operation which the lan-
guage restricts. In order to maintain the desired se-
curity properties, such situations must be prevented.
An alternative heterogeneous implementation based on
C++ -style macro expansion, also discussed in the Pizza
paper, does eliminate this problem, but it is unclear
whether that implementation would be able to support
separate compilation of parameterized classes without
changing the class file in a way similar to our method.

6.3 Virtual Types

Virtual types have also been suggested as a way to im-
plement parametric types [Tho97]. The main idea is
to allow type members of classes that are “virtual” in
the sense of C++ virtual members, with derived classes
allowed to redefine a virtual type member to any of its
subtypes. This idea can be used in a manner similar to
parameterized types, since in each subclass, the virtual
type could be given the same value as the argument to
the corresponding parameterized class. In general, re-
defining a type member in a subclass does not create a
subtype. To ensure that a subtype is created, the vir-
tual types proposal forces covariance through run-time
casts and type checks. This is similar to the checking
required to ensure type safety of Java’s covariant arrays.
In addition to the loss of static typing for parameter-
ized classes due to these required casts, tying genericity
to inheritance also limits expressiveness. For example,
mix-ins can not be expressed.

In the implementation described in [Tho97], com-
piler generated virtual methods and casts perform run-
time type checks and typecasts needed to ensure type
correctness of all covariant uses of virtual types. Due
to this reliance on compiler generated code, the system
is potentially susceptible to the same type of security
loopholes as described above.

6.4 Run-time Efficiency

One final point of comparison between these methods
is that inserted type casts add run-time overhead. The
cost of casts used for type correctness of instantia-
tions have been measured to be anywhere from 1% to
5% [Tho97] of the run time, with degenerate cases cost-
ing up to 17% [MBL97]. Our own measurements are
within the range cited in [Tho97]. Considering Java’s
design goals, this penalty is not overly restrictive, but it
should still be considered in the tradeoffs between dif-
ferent proposals. This overhead may become more or
less significant as better optimized bytecode and native
compilers are used for Java programs.

7 Additional Language Issues

There are two main avenues for future work. The first
is to examine some remaining language issues. A sec-
ond, more tentative, future direction involves studying
aspects of the Java language that have been more prob-
lematic for us and suggesting language modifications.

Two language design issues that require further
examination are the exact format of extends and
implements clauses and interactions between over-
loaded methods and parameterized classes. Overloaded
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class B extends A { ... }

class Printer {

void print(A a) { ... }

void print(B b) { ... }

}

class C<T extends A> {

void callPrint(Printer p) {

T temp;

...

p.print(temp);

}

}

C<B> c = new C<B>();

Printer printer = new Printer();

c.callPrint(printer);

Figure 11: An example of overloaded methods and parameterized classes.

methods could either be resolved on a per-instantiation
basis, or once for all instantiations. Figure 11 shows a
situation where the two resolution strategies result in
different method invocations.

We also believe it will be useful to examine some of
the Java type restrictions and determine whether they
can be made more lenient. Two specific items of in-
terest are specification of constructors and post-facto
declaration of subtype relationships.

Constructors are not inherited by subclasses and
cannot be specified in an interface. As a consequence,
there is no way to specify that a type variable will al-
ways be instantiated with a class that has a certain
constructor available. Thus, requiring the presence
of a constructor falls into the category of type rules
which must be checked on each instantiation individu-
ally. However, it may be beneficial to be able to express
the presence of constructors in parameter constraints.
The where clause proposal described in Section 6.1 al-
lows explicit constraints on the presence of constructors,
and that aspect of where clauses could be adapted to
our method. A more suitable solution may be to al-
low constructors to be specified in an interface, but it
remains to be seen if this is a feasible addition to the
Java language.

The inability to specify a subtype relationship for
an existing class limits not only the expressive power
of our constraint mechanism but the expressive power
of the Java language as a whole. One way to allevi-
ate this limitation would be through an implementedBy

declaration. An example is shown in Figure 12. Struc-
tural conformance has also been proposed as a solution
to this problem [LBR96]. Any class implementing all

the methods listed in an interface could be used as a
value of that interface type, regardless of whether the
class was declared to implement it or not. There are
many issues and tradeoffs involved with structural con-
formance, such as accidental conformance, and it is un-
clear whether or not it is a good match for the Java
language.

8 Conclusions

This paper describes a parameterized type mechanism
for the Java programming language and an implemen-
tation based on inserting a preprocess step into the
load phase of the Java Virtual Machine. The lan-
guage extension, based in part on an analysis of pa-
rameterization in object-oriented languages reported in
[CCH+89] and essentially similar to the extension con-
sidered in [OW97b], appears adequate for most common
situations. It uses only type relations implements and
extends, which are familiar to Java programmers.

In comparison with competing proposals described
in Section 6, our implementation is relatively simple
and supports more flexible language extensions than
others. By delaying instantiation until load time, we
are able to achieve what we believe is an appropriate
balance between language expressiveness, run-time ef-
ficiency and compiled code size. Since the changes to
the Java virtual machine are restricted to the loader,
we expect that our implementation can be easily added
to most Java virtual machines. Moreover, use of the
standard verifier and bytecode interpreter means that
our Java language extensions do not compromise any
security properties. We believe that this language ex-
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class Name {

int hashCode() { ... }

...

}

interface Hashable implementedBy Name {

int hashCode();

}

class Hashtable<Key implements Hashable, Value> { ... }

Hashtable<Name, Integer> table = new Hashtable<Name, Integer>();

Figure 12: Specifying an implements relationship after a class has been declared.

tension will be easy for Java programmers to adopt and
use effectively, and interfere minimally with any current
or future developments in Java implementation.

Our prototype implementation of an extended Java
Virtual Machine demonstrates that load-time instantia-
tion is an effective mechanism with many clear benefits.
Although we believe that language extensions should be
considered slowly and conservatively, it is possible that
our implementation strategy using the Java loader may
be a useful starting point for other potential extensions
to the Java language.
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