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Abstract

Multithreaded software systems are prone to errors due to the difficulty of reasoning about multiple
interleaved threads operating on shared data. Static checkers that analyze a program’s behavior over
all execution paths and all thread interleavings are a powerful approach to identifying bugs in such
systems. In this paper, we present Calvin, a scalable and expressive static checker for multithreaded
programs based on automatic theorem proving. To handle realistic programs, Calvin performs modular
checking of each procedure called by a thread using specifications of other procedures and other
threads. Our experience applying Calvin to several real-world programs indicates that Calvin has a
moderate annotation overhead and can catch common defects in multithreaded programs, such as
synchronization errors and violations of data invariants.
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1. Introduction

Many important software systems, such as operating systems and databases, are multi-
threaded. Ensuring the reliability of these systems is an essential but challenging task. It
is difficult to ensure reliability through testing alone, because of subtle, non-deterministic
interactions between threads. A timing-dependent bug may remain hidden despite months
of testing, only to show up after the system is deployed. Static checkers complement testing
by analyzing program behavior over all execution paths and all thread interleavings. How-
ever, current static checking techniques for multithreaded programs are unable to scale to
large programs and handle complicated synchronization mechanisms.

To obtain scalability, static checkers often employ modular analysis techniques that ana-
lyze each component of a system separately, using only a specification of other components.
A standard notion of modularity for sequential programgriscedure-modulareason-
ing [33], where a call site of a procedure is analyzed using a precondition/postcondition
specification of that procedure. However, this style of procedure-modular reasoning does not
generalize to multithreaded programs [9,30]. An orthogonal notion of modularity for mul-
tithreaded programs thread-modulareasoning [28], which avoids the need to consider
all possible interleavings of threads explicitly. This technique analyzes each thread sepa-
rately using a specification, called anvironment assumptipthat constrains the updates to
shared variables performed by interleaved actions of other threads. Checkers based on this
style of thread-modular reasoning have typically relied upon the inherently non-scalable
method of inlining procedure bodies. Consequently, approaches based purely on only one
of procedure-modular or thread-modular reasoning are inadequate for large programs with
many procedures and many threads.

We present a verification methodology that combines thread-modular and procedure-
modular reasoning. In our methodology, a procedure specification consists of an envi-
ronment assumption and an abstraction. The environment assumption, as in pure thread-
modular reasoning, is a two-store predicate that constrains updates to shared variables
performed by interleaved actions of other threads. The abstraction is a program that simu-
lates the procedure implementation in an environment that behaves according to the environ-
ment assumption. Since each procedure may be executed by any thread, the implementation,
environment assumption, and abstraction of a procedure are all parameterized by the thread
identifiertid

The specification of a procedupds correct if two proof obligations are satisfied. First,
the abstraction gb must simulate the implementationmfSecond, each step of the imple-
mentation must satisfy the environment assumptiop foir every thread other thaid
These two properties are checked fortall , and they need to hold only in an environ-
ment that behaves according to the environment assumptrroéddition, our checking
technique proves them by inlining the abstractions rather than the implementations of pro-
cedures called in the implementation @fWe reduce these two checks to verifying the
correctness of a sequential program and present an algorithm to produce this sequential
program. This approach allows us to leverage existing techniques for verifying sequential
programs based on verification conditions and automatic theorem proving.

We have implemented our methodology for multithreaded Java [6] programs in the Calvin
checking tool. We have applied Calvin to several multithreaded programs, the largest of
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which is a 1500 line portion of the web crawler Mercaf26] in use at Altavista. Our

experience indicates that Calvin has the following useful features:

(1) Scalability via modular reasoningt naturally scales to programs with many procedures
and threads since each procedure implementation is analyzed separately using the
specifications for the other threads and procedures.

(2) Ability to handle varied synchronization idiomBhe checker is sufficiently expres-
sive to handle the variety of synchronization idioms commonly found in systems
code, e.g., readers—writer locks, producer—consumer synchronization, and time-varying
mutex synchronization.

(3) Expressive abstractioné&lthough a procedure abstraction can describe complex be-
haviors (and in an extreme case could detail every step of the implementation), in gen-
eral the appropriate abstraction for a procedure is relatively succinct. In addition, the
necessary environment assumption annotations are simple and intuitive for programs
using common synchronization idioms, such as mutual exclusion or reader—writer
locks.

(4) Moderate annotation overheadnnotations are not brittle with respect to program
changes. That is, code modifications having little effect on a program'’s overall behav-
ior typically require only small changes to any annotations.

The moderate annotation overhead of our checker suggests that static checking may be a

cost-effective approach for ensuring the reliability of multithreaded software, simply due

to the extreme difficulty of ensuring reliability via traditional methods such as testing.

The following section introduceRlato, an idealized multithreaded language that we use
to formalize our analysis. Sectidpresents several example programs that motivate and
provide an overview of our analysis technique. Sections 4 and 5 present a complete, formal
description of our analysis. Section 6 describes our implementation and Section 7 describes
its application to some real-world programs. Section 8 surveys related work, and Section 9
concludes. Proofs of theorems stated in the paper are provided in the Appendix.

This paper is a unified description of results presented in preliminary form at confer-
ences [21,23]. In particular, this extended presentation includes a revised formal semantics,
a correctness proof for our verification methodology based on this semantics, and an addi-
tional case study (the Apprentice challenge problem proposed by Moore and Porter [37]).

2. The parallel language Plato

In this section, we present the idealized parallel programming language Pdasdi€p
language of amic gperations), and introduce notation and terminology for the rest of the
paper. In order to avoid the complexity of reasoning about programs written in a large,
complex language like Java, our theoretical discussion focuses on verification of programs
in Plato. The topic of translating Java into Plato is addressed in Section 6.

Fig. 1 shows the Plato syntax. A Plato progr&his the parallel composition of an
unbounded number of threads. Every thread has an associated thread identifier, which is
a positive integer. The sdid is the set of all thread identifiers. Each thread executes the
same stateme butSis parameterized by the identifier of the current thread, which allows
different threads to exhibit different behavior.
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s.t € Tid = {1,2,3,..})
o € GlobalStore = GlobalVar — Value
A € LocalStore = LocalVar— Value
VisibleStore = GlobalStorex LocalStore
A € Stack = LocalStoré
z € Stacks = Tid — Stack
Store = GlobalStorex Stacks
p,q € Predicate C Tid x VisibleStore
X,Y € Action C Tid x VisibleStorex VisibleStore
m € Proc
B € Defn = Proc — Stmt
P, Q € Program =S
S, T,U € Stmt =a atomic op
| S1:82 composition
| S1082 choice
| S* iteration
| m() procedure call
a,b,c € AtomicOp = p?X

Fig. 1. Plato syntax.

When the prograr® is executed, the steps of its threads are interleaved nondeterminis-
tically. Threads operate on a stdre z), whereo is a global store andmaps each e Tid
to the stack of threatl The global store maps global variables to values. The set of values
is left unspecified because it is orthogonal to our development. The stack of a thread is a
sequence of local stores, where each local store maps local variables to values. A sequential
statement may be an atomic operation (described below); a sequential comp®sitien
a non-deterministic choicg&; ]S> that executes eithefy or So; an iteration statemert*
that execute$ an arbitrary (zero or more) number of times; or a procedurencall The
names of procedures are drawn from thé&set, and the functio8 maps procedure names
to their implementations.

Atomic operations generalize many of the basic constructs found in programming lan-
guages, such as assignment and assertion. An atomic operation has the?forfoth
the predicatg and the actiorX are parameterized by the identifier of the current thread.
The predicat® must be true in the pre-store of the operation. This predicate cannot access
the entire stat€o, 7). Instead, it can only access thisible store which consists of the
global store and the local store at the top of the current thread’s stack. For convenience, we
extend the interpretation @fto the full store and write (¢, (o, z)) to meardi, A. z(r) =
A-A A p(t, (0, 4). Theaction Xis a predicate over two stores, and it describes the ef-
fect of performing the operation in terms of the pre-store and post-store. The Aalsa
refers only to the visible store. We extend the interpretatioX tf the full store and write
X(t, (0,2), (d,7)) to mean

B, A 2(t)=2- AANX@, (6,7), (@, ) A7 =z[t = I - Al

When athread with identifie¢iexecutes the atomic operatipfX in store(s, z), there are
two possible outcomes. H(z, (o, 7)) is false, then execution of the multithreaded program
terminatesin a special global stateng to indicate that an error has occurrechf, (o, z))
holds, the program moves into a post-stetauch that the constrai¥ (z, (o, z), (¢’, Z’))
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x:ed:ef<x’

=e)x
asserte def e?(true )
assume e de (e)
if e {S} tef (assume e; S)[J(assume —e)

while () {5} % (assume e 5)*: (assume —e)

acquire(mx) = (IMx=0AmX =tid )px

(
release(mx) = (MX = O)px
skip def (true )
havoc def (true )var
eastens  E (7122202000

Fig. 2. Conventional constructs in Plato.

is satisfied. If no such’ exists, the atomic operation blocks. Other threads may continue
while this operation is blocked. Updates to the store performed by the other threads might
unblock this thread later. The formal semantics of an atomic operation as a transition relation
is given in Sectior?.1.

An action is typically written as a formula containing unprimed and primed variables
and a special variabléd . Unprimed variables refer to their value in the pre-store of the
action, primed variables refer to their value in the post-store of the actiorticands the
identifier of the currently executing thread. A predicate is written as a formula with only
unprimed variables antit

For any actionX and set of variable¥ C Var, we use the notatiofX)y to mean the
action that satisfies and only allows changes to variabled/ibetween the pre-store and the
post-store, and we ugé&') to abbreviatg X ). Finally, we abbreviate the atomic operation
true ?X to the actionX.

Using atomic operations, Plato can express many conventional constructs, including
assignment, assert, assume, if, and while statements. Fig. 2 presents the encoding of these
statements in Plato. Letbe an expression. The statemesm¢Serte " goes wrong from a
state in whicleis false. Otherwise, it terminates without modifying the store. The statement
“assume e " blocks untile is true and then terminates without modifying the store. Atomic
operations can also express primitive synchronization operations such as acquiring and
releasing locks. A lock is modeled as a variatbewhich is either 0, if the lock is not held,
or otherwise is a positive integer identifying the thread holding the lock. The statement
“CAS(l,e,n) ", inwhich| andn are variables and is an expression, models the atomic
compare-and-swap operation often used for synchronizatibn=fe, then the operation
terminates after swapping the contentd oind n. Otherwise, the operation terminates
without modifying the store.

2.1. Semantics

For the remainder of this paper, we assume a fixed funéiorapping procedure names
to procedure bodies. We define the semantics of a stateBent sef[S] of sequences



158 C. Flanagan et al. / Theoretical Computer Science 338 (2005) 153-183

a,b € AtomicOpuU {Push Pop}

&,EeSeq = ay;...;ay

u,w € Step = |t,qa|

u,w € Path = uq;...;u,
¢ € PathSet

[ell® : Stmtx N — 25¢4
[al = {a}
[S1; S21¢ = [8219; [1S21¢
(5108219 = 15119 U (15214
[s*1¢ = @s14)” »
{Push; [B(m)*~+; {Pop} ifd >0
o1 = {ﬂ ifd=0

[ell : Stmt—s 25¢4
ST = Ugso 51
[[e]] : Program— PathSet

07—y ST = LS ® ... ® [in, S|
LIS1 = Uys1 DI4S]

Fig. 3. Program paths.

of atomic operations that could be performed by execUfinip give semantics to method
calls, we introduce two new atomic operatidhsshandPop. We first define the s¢tsT¢ of
sequences throug@where the stack depth never exced@see Fig3). The set of sequences
[ST is then obtained as the unionps]¢ for all 4 >0.

A threadis a pair|z, S| consisting of a thread identifieand a statemei@being executed
by threadt. A step|t, a| is a thread whose statement component is an atomic operation.
A pathis a finite sequence of steps.df = as;...;a,, then|t, a| represents the path
lt,a1l; ...; |t, ay|, where all steps are taken by the same thread. A thire&d yields the
set of pathg{|z, S|] = {|z, a| |a € [ST}-

A parallel programP can be translated into the set of pafh3], as shown in Fig. 3.
The pathiz; w is the concatenation of patl¥sandw. We will refer to a set of paths as a
pathset The pathset; ¢, is the set of all paths obtained by the concatenation of a path
from pathsetp; and a path from pathset,. Note that we are overloading the operatditt
mean both the sequential composition of statements and steps as well as the concatenation
of paths and pathsets. The pathgétis the Kleene closure of the pathsetThe pathset
11®...Qu, isthe setof all interleavings of the pats . . ., i,. The pathsep; ®...® ¢,
is the union of all pathsets obtained by taking the interleavings of a path fromyedoh
1<i<n.

We formalize the behavior of an atomic operation asaasition relation which is a
partial map from a store and an execution step to a state (see Fig. 4). A state contains the
global state, which is either a global store or the special stadeg, together with the
stacks of the threads.

If u = |t1, a1l; .. .; |ty, a,| is @ path, then

[t1,a1] [t ak |
r=(01,21) — (02,22) - - - (O, 2k) —> (O, Zk11)
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w € GlobalState GlobalStoreU {wrong}

State = GlobalStatex Stacks
e c Storex Stepx State
Givenu = |t, p?X|,
(0.2) = (0.2) if p(t. (0,2)) andX (t, (5, 2). (', 7))
(0,2) LN (wrong, z) if =p(t, (0,2))
Givenu = |t, Push,
(0,2) = (a,zlt— A-A])  if z(t) = A andA e LocalStore

Givenu = |t, Popl,
(0,2) = (a,z[t = A ifzt)=72-4

Fig. 4. Transition relation.

for some K k<nisarunofi.If k = n orw = wrong, thenr is afull run. Corresponding
to each such run, there igrace

i1 Tk
T=01L—>02 0 —> @

obtained by ignoring the stacks in the states and atomic operations in the transitions between
adjacent states in the run. We denote the trabg trace(r). If r is a run ofii € ¢, itis
defined to be a run ap andtrace(r) is defined to be a trace of. If r is a full run, we say
thattrace(r) is afull trace. If ¢ = [P]], a run (respectively, a trace) ofis also a run (resp.,
atrace) ofP.

We say that a program goes wrong frons if a run of P starting ing ends inwrong.
A programP goes wrongf P goes wrong from some store A set of global stores is

aninvariant of the progran® if for all traceso; 1, g2 O LN ar+1 Of P, whenever
g1 € I thenoy41 € 1 (Fig 4).

3. Overview of modular verification

In the remainder of this paper, we develop a scheme for modularly checking that a
multithreaded program does not go wrong and satisfies specified invariants. We start by
considering an example that provides an overview and motivation of our modular verification
method. Consider the multithreaded program SimpleLock in Fig. 5. It consists of two
modules;Top andMutex . A module is defined informally to be a collection of procedures
and global variables. The modul®p contains two procedures that manipulate a shared
integer variablex, which is initially zero and is protected by a mutexThe moduléviutex
provides acquire and release operations on that mutex. The mutex vamiebééther the
(positive) identifier of the thread holding the lock, or else 0, if the lock is not held by any
thread. The implementation a€quire is non-atomic, and uses busy-waiting based on the
atomic compare-and-swap instructid®AS described earlier. The local varialilecannot
be modified by other threads. We assume the program starts execution by concurrently
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/I module Top /I module Mutex

int x =0 ; int m=20;

void t1() { void t2() { void acquire() { void release()
acquire() acquire() var t = tid; {
X++; x = 0; while (t == tid) m=20
assert x > 0 ; release() CAS(m,0,t); }
release() } }

}

Fig. 5. SimpleLock program.

calling proceduretl inthread 1 ant? inthread 2. Note thatthis program can be expressed
as the following multithreaded Plato program:

| ((@ssumetid = 1;t1() )O(assumetid =2;t2() ))

We would like the checker to verify that the assertiontin never fails. This asser-
tion should hold because is protected bynand because the mutex implementation is
correct.

To avoid considering all possible interleavings of the various threads, our checker per-
forms thread-modular reasoning, and relies on the programmer to spe@fwaonment
assumptiortonstraining the interactions among threads. The environment assumption is an
action that refers only to the global program variables and the vatidbleThis action has
the property that its execution by threaaiimics updates to the global variables by threads
other thart. For SimpleLock, an appropriate environment assumption is:

EL A m=td =m=mni

A m=tid =x=x'.

The two conjuncts state thatif thred holds the lockm then other threads cannot modify
eithermor the protected variabbe. No environment assumption is required for the local
variablet since it cannot be accessed by concurrent threads. We also specify an irvariant
stating that whenever the lock is not heldis at least zero:

1 %¥m=0=x >0.
This invariant is necessary to ensure, afferacquires the lock and incrementsthatx is
strictly positive.

3.1. Thread-modular verification

For small programs, itis not strictly necessary to perform procedure-modular verification.
Instead, our checker could inline procedure implementations at corresponding call sites (at
least for non-recursive procedures).

LetInlineBody(S) denote the statement obtained by inlining the implementation of called
procedures in a statemefitLet us consider procedutg in the example of Figh. Fig. 6(a)
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(t'=1); E}; (t/=1)g;

((t =1): CAS(M.0Y) )™ | (Ef; (t =1 Ef: CAS(MO9) 5)*;
acquire() (t #1) B2l
Xt (X' =X+ Lx: =, 1.
assert x > 0 ; X > 0true ); Ef; (X =X+ 1x;
release() (M = 0)y; 2{; X > 0true );

Ef: (M = O)n; E7;

(a) B(t1) (b) InlineBodyB(t1 )) - -

(c) InlineBodyB(t1 )) interleaved
with operations of2 satisfyingE

Fig. 6. Thread-modular verification ¢f .

shows the implementatioi(t1 ) of t1 . Fig. 6(b) showsnlineBody5(t1 ))[tid := 1],
the result of replacingd  with the thread identifier 1 in the statemémiineBodyB(t1 )).
(All statements are represented in terms of atomic operations.)
Let E; be the action obtained by replacitig with i in E and letE} be the transitive
closure ofE;. Thread-modular verification of thread 1 consists of checking the following

property:

InlineBodyB(t1 ))[tid := 1] is simulated byE3 with respect to the environment
assumptiorE; from any state satisfyinpm= 0 A x = 0.
(Tmvl)

The notion of simulation is formalized later in the paper. For now, we give an intuitive
explanation of Propertymv 1. Consider Fig6(c), which shows the interleaving of atomic
operations innlineBodyB(t1 ))[tid := 1] with E7 to mimic an arbitrary sequence of
atomic operations of thread 2. (Operations mimicing actions of thread 2 are underlined to
distinguish them from operations of thread 1.) Checking Propeml involves verifying
that when executed from an initial state where beothnd mare zero, the statement in
Fig. 6(c) does not go wrong, and that each non-underlined atomic operation sdjsfies
Note that the statement in Fig. 6(c) can be viewed as a sequential program, and that Property
TMV1 can be checked using sequential program verification techniques.

The procedurd? satisfies a corresponding propertyv 2 with the roles ofE; and E»
swapped. Using assume-guarantee reasoning, our checker infemvitdnandrmy 2 that
the SimpleLock program does not go wrong, no matter how the scheduler interleaves the
execution of the two threads.

3.2. Adding procedure-modular verification

The inlining of procedure implementations at call sites prevents the simple approach
sketched above from analyzing large systems. To scale to larger systems, our checker per-
forms a procedure-modular analysis that uses procedure specifications in place of procedure
implementations. In this context, the main question is: What is the appropriate specification
for a procedure in a multithreaded program?
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A traditional precondition/postcondition specification &mquire  is:
requires  I; modifiesm ; ensuresm =tid Ax>0

This specification records that:

e The precondition i$;

e mcan be modified by the body atquire ;

e Whenacquire terminatesmis equal to the current thread identifier an at least 0.
This last postcondition is crucial for verifying the assertionlin

However, although this specification suffices to verify the assertith jit suffers from
a serious problem: it mentions the variakleven thouglx should properly be considered a
private variable of the separate moduitgp . This problem arises because the postcondition,
which describes the final state of the procedure’s execution, needs to record store updates
performed during execution of the procedure, both by the thread executing this procedure,
and also by other concurrent threads (which may maxijfy

In order to overcome the aforementioned problem and still support modular specification
and verification, we allow specifications that can describe intermediate atomic steps of
a procedure’s execution, and need not summarize effects of interleaved actions of other
threads.

Inthe case oacquire , the appropriate specification is tteatquire  first performs an
arbitrary number o$tutteringsteps that do not modifyy it then performs a single atomic
action that acquires the lock; after which it may perform additional stuttering steps before
returning. The actions in the specification refer only to the global variables and implicitly
allow arbitrary updates to the local variables. The code fragmdgatquire ) specifies
this behavior:

L (true )*; (m=0And =tid )y (true )*

A(acquire )
This abstraction specifies only the behavior of thrédd and therefore does not men-
tion x. Our checker validates the specificatioracfjuire by checking that the statement
A(acquire ) is a correct abstraction of the behavioradquire , i.e.: the statement
B(acquire ) is simulated byA(acquire ) from the set of states satisfyimg= 0 with
respect to the environment assumptiare .

After validating a similar specification forelease , our checker replaces calls to
acquire andrelease from the moduleTop with the corresponding abstractions
A(acquire ) and.A(release ). If InlineAbsdenotes this operation of inlining abstrac-
tions, thennlineAbgB(t1 )) andinlineAbgB(t2 )) are free of procedure calls, and so we
can apply thread-modular verification, as outlined in Sec8dn to the modul@op. In
particular, by verifying that

InlineAbgB(t1 )[tid := 1] is simulated byE3 with respect toE; from any state
satisfyingm=0Ax =0

and verifying a similar property fa2 , our checker infers by assume-guarantee reasoning
that the complete SimpleLock program does not go wrong.
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4. Modular verification

In this section, we formalize our modular verification method sketched in the previous
section. Our method requires for each procedure a specification that may refer only to
the global variables. To allow us to express such a specification, we introduce a few new
definitions:

r € SpecPredicateC Tid x GlobalStore
Z € SpecAction < Tid x GlobalStorex GlobalStore
r?Z € SpecAtomicOp
T € SpecStmt n=r?Z
| 11,12
| O,
| T

Consider the execution of a procedundy the current threatid . We assumenis ac-
companied by a specification consisting of three parts: (1) an invériant SpecPredicate
that must be maintained by all threads while executm@2) an environment assumption
E(m) € SpecActiorthat models the behavior of threads executing concurrentlytigitis
execution ofm, and (3) an abstractiod(m) € SpecStmthat summarizes the behavior of
threadtid executingm. Note that the abstractiad(m) does not contain any procedure
calls.

In order for the abstractiod (m) to be correct, we require that the implementatiin)
be simulated byd(m) with respect to the environment assumptitim). Informally, this
simulation requirement holds if, assuming other threads perform actions consistent with
&(m), each action of the implementation corresponds to some action of the abstraction. The
abstraction may allow more behaviors than the implementation, and may go wrong more
often. If the abstraction does not go wrong, then the implementation also should not go
wrong and each implementation transition must be matched by a corresponding abstraction
transition. When the implementation terminates the abstraction should be able to terminate
as well.

We formalize the notion of simulation between (multithreaded) programs. We first define
the notion of subsumption between traces. Intuitively, a trasesubsumed by a tracgif
eithert’ is identical tor or ©’ behaves like a prefix of and then goes wrong. Formally, a

tracecy —% 3+ o) —> wis subsumedy a traces’ 4, gy 0] it (1) 1<k,
(2) for all 1<i </, we haves; = ¢; ands; = ¢/, and (3) eithern’ = wrong or/ = k and
o' = w. A pathsetp, is simulatedby the pathsep,, written ¢, T ¢, if every trace ofp,
is subsumed by a trace @f, and every full trace of, is subsumed by a full trace of,.
A programP is simulatedby a progran@Q, written P C Q, if [ P]] is simulated by O]l

For any actionE € SpecActiorand a thread identifigr let FiX(E, j) € Actionbe the
action whose execution by a threadimics the execution d by thread. Formally, we have
Fix(E, j) = {(, (¢, 2), (', 7)) | (j,o,d") € E}. Given a statemerB, an environment
assumptiork, and an integej € Tid, let P(B, E, j) be the program in which theth
thread isB and every other thread Bx(E, j)*.

PB,E, )% | ((assumetid = j: B)O(assumetid = j: FiX(E, j)*)).
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A statemenB is simulatedby a statemenA with respect to an environment assumptifn
written B Cg A, if the programP (B, E, j) is simulated by the programR(A, E, j) for
all j € Tid.

Apart from being simulated byl(m), the implementatio8(;m) must also satisfy two
other properties. First, every atomic operation executed by theéadhg the execution of
B(m) must preserve the invariaitm). Second, the execution must satisfy the environment
assumption of any thregdother thant executing in any procedure’. The environment
assumption of a procedure (for threBdmust be strong enough so that environment as-
sumptions of all procedures (for a threpdifferent fromt) can be verified with its aid.
This requirement is undesirable because it would require a procedure to know about the
details of its clients. Our methodology weakens this requirement without losing soundness
and requires us to verify the environment assumptions of only those procedures that are
transitively called fronm. Let ~ be thecalls relation on the se®roc of procedures such
thatm~~[ iff procedurem calls the procedurk Let ~~* be the reflexive-transitive closure
of ~. We define a derived environment assumption for procenfuae

Emy= N EO.
m~~*[

We can check thaB(m) is simulated byA(m) and also satisfies the aforementioned
properties by checking th&(m) is simulated by a derived abstractigiin). This derived
abstractiond(m) is obtained fromA(m) by replacing every atomic operatioZ in A(m)
by 7?Z defined as follows:

t,o)er® A, o) er
A(t,0) € Z(m),

(t,0,0) € 7 4ef A(t,o,0)eZ
A(t,0") € T(m)
AVjeTid: j#1=(j,o,d)eEm)

In order to check simulation for a procedurg we first inline the derived abstractions
for procedures called fron(m). We replace the call to a procedurg in the body of
m by PreservelLocalsd(m")), where the functiorPreservelLocalss defined below. The
application of this function ensures that the inlined abstraction does not change the local
variables ofm.

PreservelLocalg) d:ef{(t, (g, ) | r(t, o)}

PreservelLocals?) def {(t, (6, ), (6", ) | Z(t, 0, 0")}
Preservelocalg?7) def Preservelocalg)?Preservelocals?)
PreservelLocaldy; 7») def PreservelLocal@?); PreservelLocald?)
PreservelLocal@1[17») def PreservelLocal@)JPreservelLocald?)

PreservelLocald™™) def PreservelLocald)*

We usdnlineAbs: Stmt— Stmtto denote this abstractioninlining operation. We then check
thatinlineAbgB(m)) is simulated byHavocLocal$.A(m)) with respect to the environment
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assumptior€ (m), where the functiotdavocLocalss defined below.
HavoclLocal$r) def {(t, (0, ) | r(t, 0)}
HavocLocalsz) &' ((, (o, 1), (o', 1)) | Z(t, o, )}
HavocLocal$r?Z2) def HavocLocal¢r)?HavocLocal$Z)
HavocLocal$Ty; T») def HavocLocal$Ty); HavocLocalsT?)

HavocLocal$71[75) def HavocLocal¢7y)[(JHavocLocal$7>)
def

HavoclLocal$T*) = HavoclLocal$T)*
Note that the recursive definition of the two functidPgeservelLocal&nd HavocLocals
differs only in the case of actions. WhiléavocLocal$Z) allows arbitrary updates to the
local variablesPreservelocals?) leaves the local variables unchanged. The following
theorem formalizes our modular verification methodology.

Theorem 1. For each procedure: € Proc, let its bodyl53(m) € Stmt abstractionA(m) €
SpecStmt environment assumptiolf (m) € SpecAction and invariant Z(m) €
SpecPredicate be given. L&t = | /() be a parallel program. Suppose for all proce-
duresm € Proc, the statement InlineAlbB(m)) is simulated by HavocLoca(Lsi(m)) with
respect to the environment assumptiim). Then the following are true

(1) Pissimulated by = || HavocLocal§A())).

(2) If ¢ € Z(1), HavocLocal$.A(/)) is simulated by truewith respect tQ‘f(l), ando -2
. wisatrace ofP, thenw # wrong andw € Z(1).

By verifying simulation for each procedure, the modular verification theorem allows us
to conclude two results. First, the progra= | /() is simulated by a program® in
which every thread executes the derived specificatidn®&cond, if the specification bf
is simulated byrue * (a statement in which no atomic operation goes wrong) with respect
to its derived assumption, then the execution of every atomic operation in the specification
of | by a thread satisfies the environment assumption of every procedure transitively called
from| for every thread other thanThis fact allows us to conclude that the parallel program
Q will not go wrong if it begins execution in a global store satisfyify@).

The proof of this theorem is given in Appendix Discharging the proof obligations in
this theorem requires a method for checking simulation between two statements without
procedure calls, which is the topic of the following section.

The modular verification methodology advocated in this section is designed to decompose
the problem of verifying a large multithreaded program into a set of smaller and more
manageable problems, one for each procedure. The verification obligation for a procedure
depends on the call tree of the entire program. Hence, a module might have to be re-verified
if changes in the implementation of another module results in a modification of the call tree.

5. Checking simulation

We first consider the simpler problem of checking that the atomic operattohis
simulated by ?Y. This simulation holds if (1) whenever?X goes wrong, theg?Y also
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goes wrong, i.e;p = —g, and (2) whenevep?X performs a transition; ?Y can perform
a corresponding transition or may go wrong, ife4 X = —¢q Vv Y. The conjunction of
these two conditions can be simplified(o= p) A (g A X = Y).

The following atomic operatiosim(p?X, ¢?Y) checks simulation between the atomic
operationg?X andg?Y; it goes wrong from states for whigh?X is not simulated by ?Y’,
blocks in states wherg?Y goes wrong, and otherwise behaves |jK&X. The definition
uses the notatiodVar’ to quantify over all primed (post-state) variables.

Sim(p?X,q?Y) B (g = p) A (WVar. g A X = Y) g A X).

We now extend our method to check simulation between an implemenisimhan abstrac-
tion A with respect to an environment assumptionLet | be the invariant associated with
the implementatioB; e.g., ifB is InlineAbg3(m)) for some procedurm, thenl is Z(m).
We assume that the abstracti@rconsists ofn atomic operationd ?Y1, I?Y>, ..., I?Y,
interleaved with stuttering sted®kK , preceded by an asserted precondipog?(true ),
and ending with the assumed postconditiue ?(pos}:

A def pre?(true );

(I?K*; I?Y1); ...; (I?K*; I?Y,);
I?K*; true ?(posh

This restriction orA enables efficient simulation checking and has been sufficient for all
our case studies. Our method may be extended to more general abstraetidhs cost of
additional complexity.

Our method translatd} A, andE into a sequential program such that if that program does
not go wrong, the® is simulated byA with respect taE. We need to check that whenewger
performs an atomic operation, the statenfepérforms a corresponding operation. In order
to perform this check, the programmer needs to addwdiliary variablepc ranging over
{1,2,...,n+ 1} toB, so that each atomic operationBrupdatespc as well as the original
program variables. The value pt indicates the operation i that will simulate the next
operation performed iB. The variablepcis initialized to 1. An atomic operation iB can
either leavegpc unchanged or increment it by 1. If the operation legveanchanged, then
the corresponding operation Anis K. If the operation changgs fromitoi + 1, then the
corresponding operation is Y;. Thus, each atomic operationBneeds to be simulated
by the following atomic operation:

n

w d=“’f1?<\/(pc= inpd =i+1AY)V(pc=pc A K))
i=1

Using the above method, we generate the sequential pro@tﬂ}ﬁ which performs the

simulation check at each atomic action, and also precedes each atomic action with the

iterated environment assumption that models the interleaved execution of other threads.

Thus, the prograrﬁlB]]f is obtained by replacing every atomic operati@®X inthe program

B with the codePreservelLocalgE*); sim(p?X, W). The following program exteanEB]]A{E

with constraints on the initial and final valuesyaf.

assume preA pc=1,; [[B]]ﬁ; PreservelLocaldz™); assert postapc=n-+1
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This program starts execution from the set of states satisfying the preconglii@nd
asserts the postconditipostat the end. Note that this sequential program is parameterized
by the thread identifigid . If this program cannot go wrong for any non-zero valugaf

then we conclude th&is simulated byA with respect tde. We leverage existing sequential
analysis techniques (based on verification conditions and automatic theorem proving) for
this purpose.

6. Implementation

We have implemented our modular verification method for multithreaded Java programs
in an automatic checking tool called Calvin. This section provides an overview of Calvin,
including a description of its annotation language and various performance optimizations
that we have implemented.

6.1. Checker architecture

The Calvin checker takes as input a Java program, together with annotations describ-
ing candidate environment assumptions, procedure abstractions, invariants, and asserted
correctness properties, and outputs warnings and error messages indicating if any of these
properties are violated. Calvin starts by parsing the input program to produce abstract syn-
tax trees (ASTSs). After type checking, these abstract syntax trees are translated into an
intermediate representation language that can express Plato 3tjtakhe translation of
annotations into Plato syntax is described in Section 6.3.

Calvin then uses the techniques of this paper, as summarized by Theorem 1, to verify
this intermediate representation of the program. To verify that each procpdatesfies
its specification, Calvin first inlines the abstraction of any procedure call frofif the
abstractionis notavailable, thenthe implementationisinlined instead.) Next, Calvin uses the
simulation checking technique of the previous section to generate a sequential “simulation
checking” prograns.

To check the correctness & a verification condition is generated according to the
following translation! which is based on Dijkstra’s weakest precondition translation [15].

ve(p?X, Q) = p AVX . X (X, X)) = Q[¥ :=X']
wherex denotes the variables modified &y
VCe(x :=e¢, Q) = Qlx :=e]
ve(S1; S2, Q) = ve(S1, ve(S2, Q)
ve(S1S2, Q) = ve(S1, Q) A Vve(Sz, Q)
ve(S*, Q) = ve(skip OI(S; (skip [1S)), Q)

This translation can handle arbitrary atomic operations, but uses a specialized translation
for particular atomic operations such as assignments. Following ESC/Java, Calvin provides

1 Note that this translation may generate exponentially large verification conditions. To avoid this problem,
Calvin actually uses a semantically equivalent translation that generates compact verification conditions, as de-
scribed in an earlier papg4]. A detailed description of that translation is outside the scope of this paper.
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two options for translating loops. One option is for the programmer to explicitly provide
a loop invariant. A second, more convenient option, which we used in our experiments,
is simply to unroll each loop a small number of times, as shown in the above translation.
Although unsound, this approach has proved adequate in practice to detect a range of defects
using both ESC/Java and Calvin.

The generated verification condition is then fed into the theorem prover Sir§8ify4].
This theorem prover is fully automatic and requires no interaction with the programmer. It
may, however, fail to terminate, in which case Calvin reports a time-out after five minutes.
If the theorem prover detects that the verification condition is invalid, then it generates a
counterexample, which is then post-processed into an appropriate error message in terms of
the original Java program. Typically, the error message either identifies an atomic step that
may violate one of the stated invariants, environment assumptions, or abstraction steps, or
the error message may identify an assertion that could go wrong. This assertion may either
be explicit, as in the example programs of Section 3, or implicit, such as, for example,
that a dereferenced pointer is never null. Conversely, if the theorem prover verifies the
validity of the verification condition, then Calvin concludes that the procedure implements
its specification and that the stated invariants and assertions are true.

The implementation of Calvin leverages extensively off the Extended Static Checker for
Java, which is a powerful checking tool for sequential Java programs. For more information
regarding ESC/Java, we refer the interested reader to a recent paper [22].

6.2. Handling Java threads and monitors

In our implementation, thread identifiers are either references to objects of type
java.lang.Thread or a special valuenain (different from all object references)
that refers to the program’s initial thread. Thread creation is modeled by introducing an
abstract instance fiefdstart  into thejava.lang.Thread class. When a thread is
created, this field is initialized to false. When a created thread is forked, this field is set to
true. The following assume statement is implicit at the beginning of the main method:

assume tid = main

The following assume statement is implicit at the beginning of the run method in any
runnable class:

assumetid =this Atid .start
The implicit lock associated with each Java object is modeled by including in each

object an additional abstract fighdblder of typejava.lang.Thread , Which is either
null or refers to the thread currently holding the lock. The Java synchronization statement

2 An abstract variable is one that is used only for specification purposes and is not originally present in the
implementation.



C. Flanagan et al. / Theoretical Computer Science 338 (2005) 153-183 169

synchronized(x){S} is desugared into
(x.holder =null Ax.holder ’'=tid )x holder :
S;
(X.hOlder "=null >X_h0|der

For the sake of simplicity, our checker assumes a sequentially consistent memory model
and that reads and writes of primitive Java types are atomic.

6.3. Annotation language

This section describes the source annotations for each procpdditee annotation
env_assumption  provides environment assumptions. Each class may have multiple
such annotations, each of which provides an action (that may refid t9. The envi-
ronment assumption of a class is the conjunction of all these actions. The environment
assumptiorf (p) of a methodp is the conjunction of the environment assumption of the
class containing and of all classes whose methods are transitively callga by

The annotatiomglobal_invariant provides invariants. Each class may have multi-
ple such annotations, with each annotation providing a predicate. The invariant of a class
is the conjunction of the predicates in all these annotations. The invariant of a npeighod
the invariant of the class containipg

The abstraction of a methqulis specified using the following notation:

requires pre
modifies ¢
action :also_modifies v1 ensures eq

action :also_modifies v, ensures ¢,
ensures post

wherec, vy, .. ., v, are sets of variablepreis a single-store predicate, and . . ., ¢,,, post
are actions.
From the above notation, we construct the abstraction statedigntas follows:

(1) We constructthe following guarant€dased on the assumption that actiongsifiould

not violate the environment assumptiongdbr other threads.

GE VThread j:(j#null Aj#tid )= EpItd = /]

(2) If lis the invariant op, we combine the various annotations into the following abstrac-

tion statementd(p):

pre?(true );
IAG AT) S5 12er A G AT ) ey

IAG AT 1%en AG AT ) e,
120G AT
true ?(posh
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The stuttering steps should satisByand only modify variables ie. Eachaction:
block in the annotations corresponds to an atomic operation in the abstraction; this
atomic operation can modify variables énand v;, it should satisfy botte; and the
guaranteds, and therequires  actionpreis asserted to hold initially. Finally, every
step is required to maintain the invariancd of
ComparingA(p) with the notation in SectioB, we see thaY; is (e1 A G A I')uy, and
Kis (G A I').

6.4. Optimizations

Calvin reduces simulation checking to the correctness of the sequential “simulation
checking” program. The simulation checking program is often significantly larger than
the original procedure implementation, due in part to the iterated environment assump-
tion inserted before each atomic operation. To reduce verification time, Calvin simplifies
the program before attempting to verify it. In particular, we have found the following two
optimizations particularly useful for simplifying the simulation checking program:

e Inall our case studies, the environment assumptions were reflexive and transitive. There-
fore, our checker optimizes the iterated environment assumptioa the single actiok
after using the automatic theorem prover to verify thaindeed reflexive and transitive.

e The environment assumption of a procedure can typically be decomposed into a conjunc-
tion of actions mentioning disjoint sets of variables, and any two such actions commute.
Moreover, assuming the original assumption is reflexive and transitive, each of these ac-
tions is also reflexive and transitive. Consider an atomic operation that accesses a single
shared variablg. An environment assertion is inserted before this atomic operation, but
all actions in the environment assumption that do not mertioan be commuted to the
right of this operation, where they merge with the environment assumption associated
with the next atomic operation. Thus, we only need to precede each atomic operation
with the actions that mention the shared variable being accessed.

7. Applications
7.1. The Apprentice challenge problem

Moore and Portef37] introduced the Apprentice example as a challenge problem for
multithreaded software analysis tools. The Apprentice example contains three classes:
Container ,Job andApprentice (see Fig. 7). The clagsontainer has an integer
field counter . The classlob, which extendS hread , has a fieldbjref  pointing to a
Container object. The clasg\pprentice  contains themain routine.

After k iterations of the loop inmain , there arek + 1 concurrently executing threads
consisting of one main thread amkdinstances oflob. We would like to prove that in
any concurrent execution the fieddunter of any instance o€ontainer takes a se-
quence of non-decreasing valugsThis property is stated by the following annotation in

3 Calvin treats thént type as unbounded unlike the 32-bit semantics in Java.
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class Container { int counter; }

class Job extends Thread {
Container objref;

public final void run() {
for () {

synchronized(objref) { objref.counter = objref.counter + 1; }
}

}

class Apprentice {
public static void main(String[] args) {
Container container = new Container();
for (;;) {
Job job = new Job();
job.objref = container;
job.start();

Fig. 7. The Apprentice challenge.

theContainer class.
*@ env_assumption \old(counter) <= counter */

Note that this property could be violated in several ways. A thteadcuting the method
t.run readst.objref thrice during one iteration of the loop:
(1) to obtain the monitor on the object pointed tottmbjref
(2) to readt.objref.counter , and
(3) to writet.objref.counter
If another thread modifiegsobjref ~ from o1 to 02 between the second and third reads, then
the value written by threadnto o,.counter may be less thanits previous value. Moreover,
even if other threads do not modifpbjref , they mightincremerttobjref.counter
more than once between the read and the writeobfref.counter . This interference
might again cause a similar violation.

The environment assumption stated above is not strong enough to analyze each thread
separately in Calvin. We also need to specify the conditions under which the environment
of a thread can modify the fieldounter andobjref .We add the annotation

[*@ unwritable by env_if holder == tid */

to the fieldcounter to indicate that for any instance of Container , if threadt
holds the monitor oro then the environment df may not modifyo.counter . Thus,
unwritable_by env_if annotations provide a simple and concise way of writing
environment assumptions. For example, tmwritable_by env_if annotation
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shown above on the fieldounter is semantically equivalent to the following
annotation:

*@ env_assumption (holder == tid)
==> (counter == \old(counter))*/

We also add the annotation
/*@ unwritable_by env_if tid == main || objref != null */

to the fieldobjref . In this annotationmain refers to the main thread. This annota-
tion specifies that for any instanceof Job, the environment ofmain must not modify
o.objref . In addition, evermain must not modifyo.objref  if o.objref s differ-
ent fromnull . Using these annotations, Calvin is successfully able to verify the original
environment assumption together with the environment assumptions induced by these an-
notations.

We now introduce a bug in the Apprentice example as suggested by Moore and Porter.

public static void main(String[] args) {

Container container = new Container();
Container bogus = new Container();
for (;}) {

Job job = new Job();

job.objref = container;

job.start();

job.objref = bogus;

}

In this buggy implementation, the threathin mutategob.objref again aftejob
has started. As mentioned above, such behavior might causedinéer field of some
Container object to decrease.

Calvin produces the following warning for the modified Apprentice example:

Apprentice.java:29: Warning: Write of variable when
not allowed
job.objref = bogus;

Associated declaration is "Apprentice.java", line 9, col 8:

/*@ unwritable_by env_if (tid == main || objref != null) */
This warning indicates thahain violates the requirement thah.objref should not
be modified once it has been initialized.

7.2. The Mercator web crawler

Mercator[26] is a web crawler which is part of Altavista’s Search Engine 3 product. It
is multithreaded and written entirely in Java. Mercator spawns a numbergerthreads
to perform the web crawl and write the results to shared data structures in memory and
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rF@
requires holder == tid holder —tid 2(true ):
modifies hasWriter ’ .
action: true (true )naswriter
alstl) modifies writer true 7< writer = null > .
- . A writer / =tid . . ’
ensures writer == null {hasWriter ,writer }

&& writer’ == tid true ?(true >has\»hriter>k

*/
public void beginWrite() {

}...

Fig. 8. Specifying readers—writer lock.

on disk. To help recover from failures, Mercator also spawtmekgroundthread that
writes a snapshot of its state to disk at regular intervals. Synchronization between these
threads is achieved using two kinds of locks: mutual exclusion lockseadtkrs—writer

locks.

We focused our analysis efforts on the part of Mercator’'s code (about 1500 LOC) that
uses readers—writer locks. We first provided a specification of the readers—writer lock imple-
mentation (clasfkeadersWriterLock ) in terms of two abstract variablesasiter
a reference to @hread object, andeaders , a set of references fthread objects. If
a thread owns the lock in write mode themniter  contains a reference to that thread and
readers is empty, otherwisevriter isnull andreaders is the set of references to
all threads that own the lock in read mode.

Consider the proceduisginWrite  that acquires the lock in write mode by setting a
program variabldhasWriter  of typeboolean . The specification dbeginWrite  and
the corresponding Plato code are shown in Fig. 8.

The next step was to annotate and check the clielReatlersWriterLock  to ensure
that they follow the synchronization discipline for accessing shared data. The part of Mer-
cator that we analyzed uses two readers—writer lodks-andL2. We use the following
unwritable_by env_if annotation to state that before modifying the variable ,
the background thread should always acquire lotkn write mode, but a worker thread
need only acquire the mutex on lock objéeét.

/*@ unwritable_by env_if  (tid == backgroundThread
&& Ll.writer == tid)
|| (tid instanceof Worker
&& L2.holder == tid) */
private long[][Jtbl; // the in-memory table

We also provided specifications of public methods that can access the shared data and
used inlining to avoid annotating non-public methods.

Overall, we needed to insert 55 annotations into the source code. The majority of these
annotations (21) were needed to specify and prove the implementation of readers—writer
locks. However, once the readers—writer class is specified, its specification can be re-used
when checking many clients of this class.
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Interface annotations (apart from thoseReadersWriterLock ) numbered 16, and
largely consisted of constraints on the type of thread that could call a method, and about
locks that needed to be held on entry to a method.

We did not find any bugs in the part of Mercator that we analyzed; however, we injected
bugs of our own, and Calvin located those. In spite of inlining all non-public methods,
the analysis took less than 10 min for all except one public method. The exception was a
method of 293 lines (after inlining non-public method calls), on which the theorem prover
ran overnight to report no errors.

7.3. The java.util.Vector library

We ran Calvin on the clagava.util.Vector (about 400 LOC) from JDKv1.2.
There are two shared fields: an integégmentCount , which contains the number of
elements in the vector, and an arralgmentData , which stores the elements. These
variables are protected by the lock on Wector object.

*@ unwritable_by_env_if this.holder == tid */
protected int elementCount;

/*@ unwritable_by env_if this.holder == tid */
protected Object elementData(];

/*@ global_invariant (0 <= elementCount)
&& (elementCount <= elementData.length)*/
/*@ global_invariant elementData !'= null */

Based on the specifications, Calvin detected a race condition illustrated in the following
excerpt.

public int lastindexOf(Object elem) {
return lastindexOf(elem, elementCount-1); // RACE!

public synchronized int lastindexOf(Object elem, int index)

{

for (int i = index; i >= 0; i--
if (elem.equals(elementDatali]))

}

synchronized void trimToSize() { ... }
synchronized boolean removeAllElements() { ... }

Suppose there are two threads manipulatingeator objectv. The first thread calls

v.lastindexOf(Object) , which readsv.elementCount  without acquiring the
lock onv. Now suppose that before the first thread dalisindexOf(Object,int) ,
the second thread callsremoveAllElements() , which sets/.elementCount  to

0, and then callsimToSize() ,whichresets.elementData  to be an array of length
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0. Then, when the first thread tries to accesdementData  based on the old value of
v.elementCount it will trigger an array out-of-bounds exception. An erroneous fix for
this race condition is as follows:

public int lastindexOf(Object elem) {
int count;
synchronized(this) { count = elementCount-1; }
return lastindexOf(elem, count);

}

Even though the lock is held whetementCount is accessed, the original defect still re-
mains. RCC/Javil 9], a static race detection tool, caught the original defect ilvéetor

class, but will not catch the defect in the modified code. Calvin, on the other hand, still re-
ports this error as whatitis: a potential array out-of-bounds error. The defect can be correctly
fixed by declarindastindexOf(Object) to besynchronized

8. Related work

A variety of static and dynamic checkers have been built for detecting data races in mul-
tithreaded programs [4,10,44,41,22]; however, these tools are limited to checking a subset
of the synchronization mechanisms found in systems code. For example, RCC/Java [19,20]
is an annotation-based checker for Java that uses a type system to identify data races. While
this tool is successful at finding errors in large programs, the inability to specify subtle
synchronization patterns results in false alarms. Moreover, these tools cannot verify invari-
ants or check refinement of abstractions. The methods proposed by Engler et al. [17,18] for
checking and inferring simple rules on code behavior are scalable and surprisingly effective,
but cannot check general invariants.

Several tools verify invariants on multithreaded programs using a combination of abstract
interpretation and model checking. The Banderatoolkit[16] uses programmer-supplied data
abstractions to translate multithreaded Java programs into the input languages of various
model checkers. Yahav [46] describes a method to model check multithreaded Java pro-
grams using a 3-valued logic [40] to abstract the store. Since these tools explicitly consider
all interleavings of the multiple threads, they have difficulty scaling to large programs. Ball
et al. [8] present a technique for model checking a software library with an unspecified
number of threads that are identical and finite-state. Bruening [11] has built a dynamic as-
sertion checker based on state-space exploration for multithreaded Java programs. His tool
concurrently runs an Eraser-like [41] race detector to ensure the absence of races, which
guarantees thatynchronized  code blocks can be considered atomic. Stoller [45] pro-
vides a generalization of Bruening’s method to allow model checking of programs with
either message-passing or shared-memory communication. Both of these approaches focus
on mutex-based synchronization and operate on the concrete program without any abstrac-
tion.

The compositional principle underlying our technique is assume-guarantee reasoning, of
which there are several variants. One of the earliest assume-guarantee proof rules was de-
veloped by Misra and Chandy [35] for message-passing systems, and later refined by others
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(e.g.,[29,39,36]). However, their message-passing formulation is not directly applicable to
shared-memory software.

The mostclosely related previous work is that by Jones [28] and by Abadi and Lamport [1].
Jones [28,27] gave a proof rule for multithreaded shared-memory programs and used it to
manually refine an assume-guarantee specification down to a program. This proof rule
of Jones allows each thread in a multithreaded program to be verified separately, but the
program for each thread does not have any procedure calls. We have extended Jones’ work
to allow the proof obligations for each thread to be checked mechanically by an automatic
theorem prover, and our extension also handles procedure calls. The use of assume-guarantee
reasoning to analyze multithreaded Java programs has also been explored by Erika Abraham
et al. [3,2]. Their approach is based on an extension of Hoare-style triples, and so requires
assertions at each program point.

Stark [43] also presented a rule for shared-memory programs to deduce that a conjunc-
tion of assume-guarantee specifications hold on a system provided each specification holds
individually, but his work did not allow the decomposition of the implementation. Com-
positional techniques similar to assume-guarantee reasoning have been used to perform
refinement in the setting of action systems as well [7].

Abadi and Lamport [1] consider a composition of components, where each component
modifies a separate part of the store. Their system is general enough to model a multithreaded
program since a component can model a collection of threads operating on shared state and
signaling among components can model procedure calls. However, their proof rule does not
allow each thread in a component to be verified separately. Collette and Knapp [13] extend
Abadi and Lamport’s approach to the more operational setting of Unity specifications [12].
Alur and Henzinger [5] and McMillan [34] have presented assume-guarantee proof rules
for hardware components.

In recent work [25], we have begun to explore an extension to the abstraction mechanism
presented here. We augment simulation-based abstraction with the notion of reduction,
which was first introduced by Lipton [32]. Reduction permits us to identify sequences of
steps in a procedure that are guaranteed to execute without interference. Such “atomic”
sequences can be summarized by a single step in procedure specifications, thereby making
specifications more concise in some cases.

9. Conclusions

We have presented a new methodology for modular verification of multithreaded pro-
grams, based on combining the twin principles of thread-modular reasoning and procedure-
modular reasoning. Our experience with Calvin, an implementation of this methodology for
multithreaded Java programs, shows that it is scalable and sufficiently expressive to check
interesting properties of real-world multithreaded systems code.

Appendix A. Proof of modular verification theorem

LemmaA.1. If the statement() is simulated by the statement HavocLo(:ailsi))Awith
respect tc€ (1), then the program|| /() is simulated by the prograrit HavocLocal$A(/)).
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Proof. Let
def
PE 10
0 %" | HavocLocalgA())
PyEPA) €. ))

0; ©'p(HavocLocals A)), £(), )
We prove that ifr is a trace of, then there is a trace of Q such that (1) is subsumed by
7/, and (2) ift’ does not go wrong, thenis a trace ofP; for all 1< j <n. The proof is by
induction on the length of.
e Base Caselett = w. This trivial trace clearly satisfies the desired property.
e Induction StepSuppose corresponds to a rur, of P, where
ra = (60, 29) =2 (01, 2) -+ (-1, %) 2 (0, 2) L (w04, 29
Letr be the prefix of, that excludes the last transition. By the induction hypothesis, there
is a runr, of Q given by
4y lr.dil d d t1,d] d
rqa = (00,29) —> (01,27) -+ (01-1, Zj_1) —> (@g, %)
such thatrace(ry) subsumesrace(r).
If wgy = wrong, thentrace(r,;) also subsumeace(r,) = v and we are done.
Otherwisew, = oy # wrong, [ = k, and there is a run, of P; given by

[t1,b1] |7k, bk

b b b b
rp = (00, 29) —— (01,27) - -+ (Ok—1, Z4_1) (Ok, 21)-

First, we prove that is subsumed by a trace @t A runr,, of P; can be obtained from
rq, andry, by replacing actions of thregdn r, by corresponding actions of thread r,
and adding the last action of threpth r, to the end of-,. This runr,; has the property
thattrace(r,;) = trace(r,) = 7. SinceP; is simulated byQ ;, there is a run oD ; given by

re = (00, 25) U (01,2 -+ On-1. Z_0) ~22L (0, 25) LD (@0, 29)
such thatrace(r.) subsumesrace(r,,) = 1. A runr.q of Q can be obtained from. andr,
by replacing actions of thregdn r,; by corresponding actions of threpth .. If m = k,
we also append the last action of thrgad r. to r;. This runr.; has the property that
trace(r.q¢) = trace(r.) and therefore it subsumes

We now prove that ito. # wrong, thent is a trace ofP; for all i € Tid. If w. # wrong,
thenm = k andw, = o, andtrace(r,) = trace(r,) = 7. Thus we get that is a trace of
P;. Now, picki € Tid such that # j. By the induction hypothesis, there is a myrof P;
given by

[t1,e1] [t ek
re = (00, 20) —— (01,27) -+ (Ok—1, Z4_1) —— (O, 2)).

. . j.d _—
We have shown that there is a transitiorQodf the formay, L> w,. From the definition

of Q, the atomic operatiod is of the formp?X wherep = Z(/) andX = (Vi € Tid : i #
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tid = 3(1)). Thus, ifw, # wrong, thené(l)(j, ok, wg) holds. Therefore, the run of
P; can be extended to

lr1.e1] Itk ek 1.E0)|
(00, 25) — (01, 29) -+ (Ok—1, 24 _1) —> (Ok, 2}) —> (Wq, 2°)

and we get that is a trace of?;. [

Lemma A.2. If a statement S is simulated by a statement T with respect to environment
assumption E and’ implies E then S is simulated by T with respectia

Proof. Fix j € Tid and let

P ¥ p(s k. j)

def .
0; EP(T.E. j)
PEP(S E, j)
o, Ep, E ).

[t sam |
e

Consider a runr = (o0, 20) M (01,721) ... (w, z) of P]f, for arbitraryj.

|ti,ail

Consider all transitiong; 1 —— a; in r wheret; # j. For each such transition,
E'(j, 0i—1, 0;) holds. SinceE’ impliesk, E(j, o;—1, ¢;) holds. Therefore; is a run ofP;.

. . [t1,b1] [tnbn |
SinceP; £ Qj, there exists a run’ = (oo, z5) — (01,2)) ... —> (@, 2)
[ti,bi]

of Q; such thatrace(r’) subsumesrace(r). Consider any transitiom; .y ——— ¢; in
r’ wherer; # j. Sincetrace(r’) = trace(r), bothE(j, 6,_1, 6;) andE’(j, 6,1, 6;) hold.
Thereforey’ is also a run on/]..

Thus, we geIPJf C Q’j forall j € Tid and therebys Cp T. O

We introduce some additional notation for the remainder of this appendiR4(a, E, j)
be the parallel program in which tlith thread executd®with the depth of its stack bounded
by d and every other thread execut€¥[tid := j]. We write B ;‘,{: A to indicate that the
programP? (B, E, j) is simulated by the prograf® (A, E, j) for all j € Tid.

Let i be a path that is the concatenatiomgdathsii1, uo, ..., u,. Letry, ro, ..., ry_1
be full runs ofiy, i, ..., i,_1, respectively, and let, be a run ofi,,, such that the last
state inr; is the first state of; 1 for 1<i < n. Then, we denote the corresponding rwf
ubyry; ;..

Lemma A.3. Suppose for allz € Proc, InlineAbgB(m)) is simulated by the statement
HavocLocal§.A(m)) with respect to the environment assumpthm).Thenfor alld € N,
statements ,&nd environment assumptions E such that> £(1) whenever | is called by
S we haveS =4 InlineAbgS).

Proof. We proceed by induction over the deptof the stack.
e Base caseSupposel = 0. By the definition of ST° andInlineAbsS), we get[S]°
[InlineAbgS)]. Therefores =% InlineAbgs).
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e Induction stepSupposel > 1. We proceed by induction over the structuresoFix an
E such thate = £(m) whenevemis called byS. Also, fix j € Tid.

o (S =a): Then,InlineAbsS) = a. Therefore,[S]¢ = [InlineAbgS)], and so,
S &4 InlineAbgs).

o (S = S1; S») : Consider a rum of P4(S, E, j). There are two possible cases: (1)
isarun ofP4(S1, E, j), or (2)r = r1; ra, r1is afull run of P4(S1, E, j), andro is a
run of P4(S,, E, j).

Casel: By the induction hypothesis, we ha§e g‘f; InlineAbgS1). Therefore, there
is a runr’ of P(InlineAbgS1), E, j) such thatrace(r) is subsumed byrace(r’). Since
r"is a run of P(InlineAbgS1), E, j), it is also a run of the prograrR(InlineAbgS1);
InlineAbgS?), E, j).

Case2: By the induction hypothesis, we have tiSatC%. InlineAbgS1) andS, =%
InlineAbg S2). Then there is a full rumy of P(InlineAbgS1), E, j) such thatrace(ry)
is subsumed byrace(r}). If r; goes wrong, then; is also a run ofP(InlineAbgS1);
InlineAbgS2), E, j) and we are done.

Otherwisetrace(ry) = trace(r;). Further, there is also a rug of P(InlineAbgS>),
E, j) such thatrace(r,) is subsumed byrace(r,). Letr’ = ry; ry. Then, we get that
trace(r) is subsumed bytrace(r’) and r’ is a run of P(InlineAbgSy);
InlineAbgS2), E, j).

SincelnlineAbgS1; S2) = InlineAbgS1); InlineAbgS»), in both cases we get thait
is a run of P(InlineAbgS1; S2), E, j).

o (S = $10155) : Consider a rum of P4 (S, E, j). Eitherr is a run ofP4(S1, E, j) orris a
runof P4 (S, E, j). By the induction hypothesis, we g&t =% InlineAbgS;) andS, =4
InlineAbg Sy). If risarunofP4(Sy, E, j), thenthereisarurf of P(InlineAbgS1), E, j)
such thatrace(r) is subsumed btrace(r’). If ris a run of P4 (S, E, j), then there is a
runr’ of P(InlineAbgS2), E, j) such thatrace(r) is subsumed birace(r’). Thus, there
is a runr’ of P(InlineAbg S1)0InlineAbg S»), E, j) such thatrace(r) is subsumed by
trace(r’). Since we also know thadmlineAbgS10152) = InlineAbg S1)InlineAbgS»),
we getr’ is a run of P(InlineAbgS11S»), E, j).

o (§ = 81%): Consider a rurr of P4(S,E, j). Then, for somer > 0, there are runs
ri,r2, ..., ry With the following properties: (1) = r1;r2; ...; ry, (2)forallO< i < x,
ri is a full run of P4(S, E, j), and (3)r, is a run of P4(S, E, j).

By the induction hypothesis, we hase =4 InlineAbgS1). Therefore, for all 0< i <
x, there is a full runv] of P(InlineAbgS1), E, j) such thatirace(r;) is subsumed by
trace(r/). Moreover, there is a ruri, of P(InlineAbgS1), E, j) such thatrace(r,) is
subsumed byrace(r,).

Casel: At least one of (1<i <x) goes wrong. Lej be the least that goes wrong.

Letr' =r;.. .5 r}. Thenr' is a run of P(InlineAbg S1)*, E, j) andtrace(r’) subsumes
trace(r).
Case2: No runr; (1<i<x) goes wrong. Let’ = rj;...;r;. Thenr" is a run of

P(InlineAbgS1)*, E, j) andtrace(r’) = trace(r).

In both case, we get a run’ of P(InlineAbgS1)*, E, j) such thattrace(r’)
subsumesrace(r). SincelnlineAbgS1*) = InlineAbgS1)*, we get that’ is a run of
PdnlineAbgS1%), E, j).
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o (S=m() ): Since the statememt() calls the proceduren, we haveE = £(m).

Moreover,£(m) = £(I) whenevel is called bym. ThereforeE = £(I) whenevel is
called bym. From the induction hypothesis, we gétmn) 41 InlineAbgB(m)). We

also have the premise thetlineAbgB(m)) Eg”(m) HavocLocaISA(m)). SincekE =

E(m), we use Lemma.2 to getinlineAbgB(m)) Cr HavocLocalgA(m)). It follows
that B(m) ;‘é‘l HavocLocalsfi(m)). Now, note the following two identities:
1.[S14 = {Push: [B(m)]“~%; {Pop).

2.InlineAbgS) = PreservelLocalsd(m)).

Note further that the two programSPdfl(HavocLocalsﬁ(m)), E,j) and
Pd‘l(PreserveLocaKsAi(m)), E, j) have identical sets of traces (for @ andPush
andPoponly modify local state. Therefore, we conclude tﬁa:j.‘;{: InlineAbgs). O

Restatement of Theoreml. For each proceduren € Proc, let its bodyB(m) € Stmt
abstraction4(m) C SpecStmenvironmentassumptid(m) C SpecActionand invariant
I(m) < SpecPredicate be given. Let= || /() be a parallel program. Suppose for all
proceduresn € Proc, the statement InlineA8(m)) is simulated by HavocLocalgl (m))
with respect to the environment assumptfdm). Then the following are true.

(1) Pis simulated byQ = | HavocLocal§A(l)).

(2) If 0 € Z(I), HavocLocals.A(l)) is simulated byrue * with respect tcf(l), andg %
.. wisatrace ofP, thenw # wrong andw € Z(1).

Proof. We consider each part of the theorem in turn.
e Part 1. By LemmaA.3, we get/() Eé(z) InlineAbg/() ) for all 4>0. Therefore

1) Eé(z) InlineAbg/() ). SincelnlineAbgi() ) = PreserveLocalSéi(l)) we know
that/() Céo PreserveLocalsd(1)). Additionally, the two program®(HavocLocals

(A(l)), 5(1), ) andP(PreserveLocal(sft(l)), é(l), j) have identical sets of traces, for
allj. Therefore/() Cé0 HavocLocal§A())). By Lemma A.1, we can conclude tHat
is simulated byQ.
e Part 2: By induction on the lengtim of a runr of P.
o Base caseForm = 0, og € Z(l), and hence the trivial rundoes not end imrong.

o Induction stepLetm > 0 and letr be the run

[t1,a1] [tn,an|
(60, 20) —— (01, 21) ... (On—1, Zn—1) —> (@, 2),

whereag € Z(I). By the induction hypothesis, we have tlaat . .., 6,-1 € Z(I).
SinceP C Q, thereis a run’ of Q such thatrace(r’) subsumesrace(r). Letr’ be
the run

|t1,b1]

Jm |
(00, 20) ——> (61,21) -+ - (Om—1, Zpy_1) ——

(o, 2)

where for eactk, by is pi?X; wherepy = py AZ(l) andX; = Xx AZ'(1) A (Vi €
Tid:i £tid = £()).
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Now sinceby is of the above forntrace(r’) is also a trace of the prograP( A(l), é 0,
tn), as elaborated below:

. b .
(1) For each state transitior_1 't—kl> o, sinceoy_1 € Z(l), we conclude that
s Pk ?X,
Op1 [tm s P ?X k| o

(2) For each state transitian_1 't’—bk'> o Wherer # t,,, é(l)(t, or_1, o) holds.

Furthermore, sincel(/) is simulated bytrue *, we conclude thafrace(r’) is a trace
of P(true*, £(1), t,,), which means thab’ # wrong. Thereforen = m andw’ = .
From the structure df,, and the fact that,,—1 € Z(l) andw # wrong, we conclude
thatw € Z(). O
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