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Abstract

Multithreaded software systems are prone to errors due to the difficulty of reasoning about multiple
interleaved threads operating on shared data. Static checkers that analyze a program’s behavior over
all execution paths and all thread interleavings are a powerful approach to identifying bugs in such
systems. In this paper, we present Calvin, a scalable and expressive static checker for multithreaded
programsbasedonautomatic theoremproving.Tohandle realistic programs,Calvin performsmodular
checking of each procedure called by a thread using specifications of other procedures and other
threads. Our experience applying Calvin to several real-world programs indicates that Calvin has a
moderate annotation overhead and can catch common defects in multithreaded programs, such as
synchronization errors and violations of data invariants.
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1. Introduction

Many important software systems, such as operating systems and databases, are multi-
threaded. Ensuring the reliability of these systems is an essential but challenging task. It
is difficult to ensure reliability through testing alone, because of subtle, non-deterministic
interactions between threads. A timing-dependent bug may remain hidden despite months
of testing, only to show up after the system is deployed. Static checkers complement testing
by analyzing program behavior over all execution paths and all thread interleavings. How-
ever, current static checking techniques for multithreaded programs are unable to scale to
large programs and handle complicated synchronization mechanisms.
To obtain scalability, static checkers often employ modular analysis techniques that ana-

lyze each component of a system separately, using only a specification of other components.
A standard notion of modularity for sequential programs isprocedure-modularreason-
ing [33], where a call site of a procedure is analyzed using a precondition/postcondition
specificationof that procedure.However, this style of procedure-modular reasoningdoesnot
generalize to multithreaded programs [9,30]. An orthogonal notion of modularity for mul-
tithreaded programs isthread-modularreasoning [28], which avoids the need to consider
all possible interleavings of threads explicitly. This technique analyzes each thread sepa-
rately using a specification, called anenvironment assumption, that constrains the updates to
shared variables performed by interleaved actions of other threads. Checkers based on this
style of thread-modular reasoning have typically relied upon the inherently non-scalable
method of inlining procedure bodies. Consequently, approaches based purely on only one
of procedure-modular or thread-modular reasoning are inadequate for large programs with
many procedures and many threads.
We present a verification methodology that combines thread-modular and procedure-

modular reasoning. In our methodology, a procedure specification consists of an envi-
ronment assumption and an abstraction. The environment assumption, as in pure thread-
modular reasoning, is a two-store predicate that constrains updates to shared variables
performed by interleaved actions of other threads. The abstraction is a program that simu-
lates the procedure implementation in anenvironment that behaves according to the environ-
ment assumption. Since each proceduremay be executed by any thread, the implementation,
environment assumption, and abstraction of a procedure are all parameterized by the thread
identifiertid .
The specification of a procedurep is correct if two proof obligations are satisfied. First,

the abstraction ofpmust simulate the implementation ofp. Second, each step of the imple-
mentation must satisfy the environment assumption ofp for every thread other thantid .
These two properties are checked for alltid , and they need to hold only in an environ-
ment that behaves according to the environment assumption ofp. In addition, our checking
technique proves them by inlining the abstractions rather than the implementations of pro-
cedures called in the implementation ofp. We reduce these two checks to verifying the
correctness of a sequential program and present an algorithm to produce this sequential
program. This approach allows us to leverage existing techniques for verifying sequential
programs based on verification conditions and automatic theorem proving.
Wehave implemented ourmethodology formultithreaded Java [6] programs in theCalvin

checking tool. We have applied Calvin to several multithreaded programs, the largest of
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which is a 1500 line portion of the web crawler Mercator[26] in use at Altavista. Our
experience indicates that Calvin has the following useful features:
(1) Scalability viamodular reasoning: It naturally scales toprogramswithmanyprocedures

and threads since each procedure implementation is analyzed separately using the
specifications for the other threads and procedures.

(2) Ability to handle varied synchronization idioms: The checker is sufficiently expres-
sive to handle the variety of synchronization idioms commonly found in systems
code, e.g., readers–writer locks, producer–consumer synchronization, and time-varying
mutex synchronization.

(3) Expressive abstractions: Although a procedure abstraction can describe complex be-
haviors (and in an extreme case could detail every step of the implementation), in gen-
eral the appropriate abstraction for a procedure is relatively succinct. In addition, the
necessary environment assumption annotations are simple and intuitive for programs
using common synchronization idioms, such as mutual exclusion or reader–writer
locks.

(4) Moderate annotation overhead: Annotations are not brittle with respect to program
changes. That is, code modifications having little effect on a program’s overall behav-
ior typically require only small changes to any annotations.

The moderate annotation overhead of our checker suggests that static checking may be a
cost-effective approach for ensuring the reliability of multithreaded software, simply due
to the extreme difficulty of ensuring reliability via traditional methods such as testing.
The following section introducesPlato, an idealized multithreaded language that we use

to formalize our analysis. Section3 presents several example programs that motivate and
provide an overview of our analysis technique. Sections 4 and 5 present a complete, formal
description of our analysis. Section 6 describes our implementation and Section 7 describes
its application to some real-world programs. Section 8 surveys related work, and Section 9
concludes. Proofs of theorems stated in the paper are provided in the Appendix.
This paper is a unified description of results presented in preliminary form at confer-

ences [21,23]. In particular, this extended presentation includes a revised formal semantics,
a correctness proof for our verification methodology based on this semantics, and an addi-
tional case study (the Apprentice challenge problem proposed by Moore and Porter [37]).

2. The parallel language Plato

In this section, we present the idealized parallel programming language Plato (parallel
language of atomic operations), and introduce notation and terminology for the rest of the
paper. In order to avoid the complexity of reasoning about programs written in a large,
complex language like Java, our theoretical discussion focuses on verification of programs
in Plato. The topic of translating Java into Plato is addressed in Section 6.
Fig. 1 shows the Plato syntax. A Plato programP is the parallel composition of an

unbounded number of threads. Every thread has an associated thread identifier, which is
a positive integer. The setTid is the set of all thread identifiers. Each thread executes the
same statementS, butSis parameterized by the identifier of the current thread, which allows
different threads to exhibit different behavior.
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s, t ∈ Tid = {1,2,3, . . .}
� ∈ GlobalStore = GlobalVar→ Value
� ∈ LocalStore = LocalVar→ Value

VisibleStore = GlobalStore× LocalStore
� ∈ Stack = LocalStore∗
z ∈ Stacks = Tid→ Stack

Store = GlobalStore× Stacks
p, q ∈ Predicate ⊆ Tid× VisibleStore
X, Y ∈ Action ⊆ Tid× VisibleStore× VisibleStore
m ∈ Proc
B ∈ Defn = Proc→ Stmt

P,Q ∈ Program ::= ‖ S
S, T ,U ∈ Stmt ::= a atomic op

| S1; S2 composition
| S1�S2 choice
| S∗ iteration
| m() procedure call

a, b, c ∈ AtomicOp ::= p?X

Fig. 1. Plato syntax.

When the programP is executed, the steps of its threads are interleaved nondeterminis-
tically. Threads operate on a store(�, z), where� is a global store andzmaps eacht ∈ Tid
to the stack of threadt. The global store maps global variables to values. The set of values
is left unspecified because it is orthogonal to our development. The stack of a thread is a
sequence of local stores, where each local store maps local variables to values.A sequential
statement may be an atomic operation (described below); a sequential compositionS1; S2;
a non-deterministic choiceS1�S2 that executes eitherS1 or S2; an iteration statementS∗
that executesSan arbitrary (zero or more) number of times; or a procedure callm(). The
names of procedures are drawn from the setProc, and the functionBmaps procedure names
to their implementations.
Atomic operations generalize many of the basic constructs found in programming lan-

guages, such as assignment and assertion. An atomic operation has the formp?X. Both
the predicatep and the actionX are parameterized by the identifier of the current thread.
The predicatepmust be true in the pre-store of the operation. This predicate cannot access
the entire state(�, z). Instead, it can only access thevisible store, which consists of the
global store and the local store at the top of the current thread’s stack. For convenience, we
extend the interpretation ofp to the full store and writep(t, (�, z)) to mean∃�,�. z(t) =
� · � ∧ p(t, (�, �)). Theaction X is a predicate over two stores, and it describes the ef-
fect of performing the operation in terms of the pre-store and post-store. The actionX also
refers only to the visible store. We extend the interpretation ofX to the full store and write
X(t, (�, z), (�′, z′)) to mean

∃�, �′,�. z(t) = � · � ∧X(t, (�, �), (�′, �′)) ∧ z′ = z[t �→ �′ · �].
Whena threadwith identifiert executes the atomic operationp?X in store(�, z), there are

two possible outcomes. Ifp(t, (�, z)) is false, then execution of the multithreaded program
terminates inaspecial global statewrong to indicate that anerror hasoccurred. Ifp(t, (�, z))
holds, the program moves into a post-store�′ such that the constraintX(t, (�, z), (�′, z′))
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x = e
def= 〈x ′ = e〉x

assert e
def= e?〈true 〉

assume e
def= 〈e〉

if (e) { S } def= (assume e ; S)�(assume ¬e)
while (e) { S } def= (assume e ; S)∗; (assume ¬e)

acquire(mx)
def= 〈mx= 0∧mx′ = tid 〉mx

release(mx)
def= 〈mx′ = 0〉mx

skip
def= 〈true 〉

havoc
def= 〈true 〉Var

CAS(l,e,n)
def=

〈 ∧ l �= e ⇒ (l ′ = l ∧ n′ = n)
∧ l = e ⇒ (l ′ = n ∧ n′ = l )

〉
l,n

Fig. 2. Conventional constructs in Plato.

is satisfied. If no such�′ exists, the atomic operation blocks. Other threads may continue
while this operation is blocked. Updates to the store performed by the other threads might
unblock this thread later. The formal semantics of an atomic operation as a transition relation
is given in Section2.1.
An action is typically written as a formula containing unprimed and primed variables

and a special variabletid . Unprimed variables refer to their value in the pre-store of the
action, primed variables refer to their value in the post-store of the action, andtid is the
identifier of the currently executing thread. A predicate is written as a formula with only
unprimed variables andtid .
For any actionX and set of variablesV ⊆ Var, we use the notation〈X〉V to mean the

action that satisfiesXand only allows changes to variables inVbetween the pre-store and the
post-store, and we use〈X〉 to abbreviate〈X〉∅. Finally, we abbreviate the atomic operation
true ?X to the actionX.
Using atomic operations, Plato can express many conventional constructs, including

assignment, assert, assume, if, and while statements. Fig. 2 presents the encoding of these
statements in Plato. Lete be an expression. The statement “assert e ” goes wrong from a
state in whiche is false. Otherwise, it terminates without modifying the store. The statement
“assume e ” blocks untile is true and then terminates without modifying the store.Atomic
operations can also express primitive synchronization operations such as acquiring and
releasing locks. A lock is modeled as a variablemxwhich is either 0, if the lock is not held,
or otherwise is a positive integer identifying the thread holding the lock. The statement
“CAS(l,e,n) ”, in which l andn are variables ande is an expression, models the atomic
compare-and-swap operation often used for synchronization. Ifl = e, then the operation
terminates after swapping the contents ofl andn. Otherwise, the operation terminates
without modifying the store.

2.1. Semantics

For the remainder of this paper, we assume a fixed functionB mapping procedure names
to procedure bodies. We define the semantics of a statementSas a set[[S]] of sequences
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a, b ∈ AtomicOp∪ {Push,Pop}
ā, b̄ ∈ Seq = a1; . . . ; an
u,w ∈ Step = |t, a|
ū, w̄ ∈ Path = u1; . . . ; un

� ∈ PathSet

[[•]]• : Stmt×N → 2Seq

[[a]]d = {a}
[[S1; S2]]d = [[S1]]d ; [[S2]]d
[[S1�S2]]d = [[S1]]d ∪ [[S2]]d

[[S∗]]d = ([[S]]d )∗

[[m()]]d =
{ {Push}; [[B(m)]]d−1; {Pop} if d > 0
∅ if d = 0

[[•]] : Stmt→ 2Seq

[[S]] = ⋃
d �0 [[S]]d

[[•]] : Program→ PathSet
[[||n
i=1S]] = [[|1, S|]] ⊗ . . . ⊗ [[|n, S|]]
[[ ‖ S]] = ⋃

n�1 [[||ni=1S]]

Fig. 3. Program paths.

of atomic operations that could be performed by executingS. To give semantics to method
calls, we introduce two new atomic operationsPushandPop.We first define the set[[S]]d of
sequences throughSwhere the stack depth never exceedsd (see Fig.3). The set of sequences
[[S]] is then obtained as the union of[[S]]d for all d�0.
A threadis a pair|t, S| consisting of a thread identifiert and a statementSbeing executed

by threadt. A step|t, a| is a thread whose statement component is an atomic operation.
A path is a finite sequence of steps. Ifā = a1; . . . ; an, then |t, ā| represents the path
|t, a1|; . . . ; |t, an|, where all steps are taken by the same thread. A thread|t, S| yields the
set of paths[[|t, S|]] = {|t, ā| | ā ∈ [[S]]}.
A parallel programP can be translated into the set of paths[[P ]], as shown in Fig. 3.

The pathū; w̄ is the concatenation of pathsū andw̄. We will refer to a set of paths as a
pathset. The pathset�1;�2 is the set of all paths obtained by the concatenation of a path
from pathset�1 and a path from pathset�2. Note that we are overloading the operator “;” to
mean both the sequential composition of statements and steps as well as the concatenation
of paths and pathsets. The pathset�∗ is the Kleene closure of the pathset�. The pathset
ū1⊗ . . .⊗ ūn is the set of all interleavings of the pathsū1, . . . , ūn. The pathset�1⊗ . . .⊗�n
is the union of all pathsets obtained by taking the interleavings of a path from each�i for
1� i�n.
We formalize the behavior of an atomic operation as atransition relation, which is a

partial map from a store and an execution step to a state (see Fig. 4). A state contains the
global state, which is either a global store or the special statewrong, together with the
stacks of the threads.
If ū = |t1, a1|; . . . ; |tn, an| is a path, then

r = (�1, z1) |t1,a1|−−−−→ (�2, z2) · · · (�k, zk) |tk,ak |−−−−→ (�, zk+1)
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� ∈ GlobalState = GlobalStore∪ {wrong}
State = GlobalState× Stacks
• •−→ • ⊆ Store× Step× State

Givenu = |t, p?X|,
(�, z)

u−→ (�′, z′) if p(t, (�, z)) andX(t, (�, z), (�′, z′))
(�, z)

u−→ (wrong, z) if ¬p(t, (�, z))
Givenu = |t,Push|,
(�, z)

u−→ (�, z[t �→ � ·�]) if z(t) = � and� ∈ LocalStore

Givenu = |t,Pop|,
(�, z)

u−→ (�, z[t �→ �]) if z(t) = � ·�

Fig. 4. Transition relation.

for some 1�k�n is arun of ū. If k = n or� = wrong, thenr is afull run. Corresponding
to each such run, there is atrace

� = �1
t1−→ �2 · · ·�k tk−→ �

obtained by ignoring the stacks in the states and atomic operations in the transitions between
adjacent states in the run. We denote the trace� by trace(r). If r is a run ofū ∈ �, it is
defined to be a run of� andtrace(r) is defined to be a trace of�. If r is a full run, we say
thattrace(r) is afull trace. If � = [[P ]], a run (respectively, a trace) of� is also a run (resp.,
a trace) ofP.
We say that a programP goes wrong from� if a run ofP starting in� ends inwrong.

A programP goes wrongif P goes wrong from some store�. A set of global storesI is

an invariant of the programP if for all traces�1
t1−→ �2 · · ·�k tk−→ �k+1 of P, whenever

�1 ∈ I then�k+1 ∈ I (Fig 4).

3. Overview of modular verification

In the remainder of this paper, we develop a scheme for modularly checking that a
multithreaded program does not go wrong and satisfies specified invariants. We start by
consideringanexample thatprovidesanoverviewandmotivationofourmodular verification
method. Consider the multithreaded program SimpleLock in Fig. 5. It consists of two
modules,Top andMutex . A module is defined informally to be a collection of procedures
and global variables. The moduleTop contains two procedures that manipulate a shared
integer variablex , which is initially zero and is protected by amutexm. ThemoduleMutex
provides acquire and release operations on that mutex. The mutex variablemis either the
(positive) identifier of the thread holding the lock, or else 0, if the lock is not held by any
thread. The implementation ofacquire is non-atomic, and uses busy-waiting based on the
atomic compare-and-swap instruction(CAS) described earlier. The local variablet cannot
be modified by other threads. We assume the program starts execution by concurrently
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// module Top
int x = 0 ;

void t1() {
acquire() ;
x++ ;
assert x > 0 ;
release() ;

}

void t2() {
acquire() ;
x = 0 ;
release() ;

}

// module Mutex
int m = 0 ;

void acquire() {
var t = tid;
while (t == tid)

CAS(m,0,t);
}

void release()
{

m = 0;
}

Fig. 5. SimpleLock program.

calling procedurest1 in thread1andt2 in thread2.Note that this programcanbeexpressed
as the following multithreaded Plato program:

‖ ((assume tid = 1; t1() )�(assume tid = 2; t2() ))

We would like the checker to verify that the assertion int1 never fails. This asser-
tion should hold becausex is protected bymand because the mutex implementation is
correct.
To avoid considering all possible interleavings of the various threads, our checker per-

forms thread-modular reasoning, and relies on the programmer to specify anenvironment
assumptionconstraining the interactions among threads. The environment assumption is an
action that refers only to the global program variables and the variabletid . This action has
the property that its execution by threadtmimics updates to the global variables by threads
other thant. For SimpleLock, an appropriate environment assumption is:

E
def= ∧ m= tid ⇒ m= m′

∧ m= tid ⇒ x = x ′.

The two conjuncts state that if threadtid holds the lockm, then other threads cannotmodify
eithermor the protected variablex . No environment assumption is required for the local
variablet since it cannot be accessed by concurrent threads. We also specify an invariantI
stating that whenever the lock is not held,x is at least zero:

I
def= m= 0⇒ x�0.

This invariant is necessary to ensure, aftert1 acquires the lock and incrementsx , thatx is
strictly positive.

3.1. Thread-modular verification

For small programs, it is not strictly necessary to performprocedure-modular verification.
Instead, our checker could inline procedure implementations at corresponding call sites (at
least for non-recursive procedures).
Let InlineBody(S) denote the statement obtained by inlining the implementation of called

procedures in a statementS. Let us consider proceduret1 in the example of Fig.5. Fig. 6(a)



C. Flanagan et al. / Theoretical Computer Science 338 (2005) 153–183 161

acquire() ;
x++ ;
assert x > 0 ;
release() ;

(a) B(t1 )

〈t ′ = 1〉t;
(〈t = 1〉; CAS(m,0,t) ; )∗;
〈t �= 1〉
〈x ′ = x + 1〉x;
x > 0?〈true 〉;
〈m′ = 0〉m;

(b) InlineBody(B(t1 ))

E∗1; 〈t ′ = 1〉t;
(E∗1; 〈t = 1〉; E∗1; CAS(m,0,t) ; )∗;
E∗1; 〈t �= 1〉
E∗1; 〈x ′ = x + 1〉x;
E∗1; x > 0?〈true 〉;
E∗1; 〈m′ = 0〉m; E∗1;

(c) InlineBody(B(t1 )) interleaved
with operations oft2 satisfyingE1

Fig. 6. Thread-modular verification oft1 .

shows the implementationB(t1 ) of t1 . Fig. 6(b) showsInlineBody(B(t1 ))[tid := 1],
the result of replacingtid with the thread identifier 1 in the statementInlineBody(B(t1 )).
(All statements are represented in terms of atomic operations.)
Let Ei be the action obtained by replacingtid with i in E and letE∗i be the transitive

closure ofEi . Thread-modular verification of thread 1 consists of checking the following
property:

InlineBody(B(t1 ))[tid := 1] is simulated byE∗2 with respect to the environment
assumptionE1 from any state satisfyingm= 0∧ x = 0.

(TMV1)

The notion of simulation is formalized later in the paper. For now, we give an intuitive
explanation of PropertyTMV1. Consider Fig.6(c), which shows the interleaving of atomic
operations inInlineBody(B(t1 ))[tid := 1] with E∗1 to mimic an arbitrary sequence of
atomic operations of thread 2. (Operations mimicing actions of thread 2 are underlined to
distinguish them from operations of thread 1.) Checking PropertyTMV1 involves verifying
that when executed from an initial state where bothx andmare zero, the statement in
Fig. 6(c) does not go wrong, and that each non-underlined atomic operation satisfiesE2.
Note that the statement in Fig. 6(c) can be viewed as a sequential program, and that Property
TMV1 can be checked using sequential program verification techniques.
The proceduret2 satisfies a corresponding propertyTMV2 with the roles ofE1 andE2

swapped. Using assume-guarantee reasoning, our checker infers fromTMV1 andTMV2 that
the SimpleLock program does not go wrong, no matter how the scheduler interleaves the
execution of the two threads.

3.2. Adding procedure-modular verification

The inlining of procedure implementations at call sites prevents the simple approach
sketched above from analyzing large systems. To scale to larger systems, our checker per-
forms a procedure-modular analysis that uses procedure specifications in place of procedure
implementations. In this context, the main question is:What is the appropriate specification
for a procedure in a multithreaded program?



162 C. Flanagan et al. / Theoretical Computer Science 338 (2005) 153–183

A traditional precondition/postcondition specification foracquire is:

requires I ; modifies m ; ensures m = tid ∧ x�0

This specification records that:
• The precondition isI;
• mcan be modified by the body ofacquire ;
• Whenacquire terminates,mis equal to the current thread identifier andx is at least 0.
This last postcondition is crucial for verifying the assertion int1 .
However, although this specification suffices to verify the assertion int1 , it suffers from

a serious problem: it mentions the variablex , even thoughx should properly be considered a
private variable of the separatemoduleTop. This problem arises because the postcondition,
which describes the final state of the procedure’s execution, needs to record store updates
performed during execution of the procedure, both by the thread executing this procedure,
and also by other concurrent threads (which may modifyx ).
In order to overcome the aforementioned problem and still support modular specification

and verification, we allow specifications that can describe intermediate atomic steps of
a procedure’s execution, and need not summarize effects of interleaved actions of other
threads.
In the case ofacquire , the appropriate specification is thatacquire first performs an

arbitrary number ofstutteringsteps that do not modifym; it then performs a single atomic
action that acquires the lock; after which it may perform additional stuttering steps before
returning. The actions in the specification refer only to the global variables and implicitly
allow arbitrary updates to the local variables. The code fragmentA(acquire ) specifies
this behavior:

A(acquire )
def= 〈true 〉∗; 〈m= 0∧m′ = tid 〉m; 〈true 〉∗

This abstraction specifies only the behavior of threadtid and therefore does not men-
tion x . Our checker validates the specification ofacquire by checking that the statement
A(acquire ) is a correct abstraction of the behavior ofacquire , i.e.: the statement
B(acquire ) is simulated byA(acquire ) from the set of states satisfyingm= 0 with
respect to the environment assumptiontrue .
After validating a similar specification forrelease , our checker replaces calls to

acquire and release from the moduleTop with the corresponding abstractions
A(acquire ) andA(release ). If InlineAbsdenotes this operation of inlining abstrac-
tions, thenInlineAbs(B(t1 )) andInlineAbs(B(t2 )) are free of procedure calls, and so we
can apply thread-modular verification, as outlined in Section3.1, to the moduleTop. In
particular, by verifying that

InlineAbs(B(t1 ))[tid := 1] is simulated byE∗2 with respect toE1 from any state
satisfyingm= 0∧ x = 0

and verifying a similar property fort2 , our checker infers by assume-guarantee reasoning
that the complete SimpleLock program does not go wrong.
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4. Modular verification

In this section, we formalize our modular verification method sketched in the previous
section. Our method requires for each procedure a specification that may refer only to
the global variables. To allow us to express such a specification, we introduce a few new
definitions:

r ∈ SpecPredicate⊆ Tid×GlobalStore
Z ∈ SpecAction ⊆ Tid×GlobalStore×GlobalStore

r?Z ∈ SpecAtomicOp
T ∈ SpecStmt ::= r?Z

| T1; T2
| T1�T2
| T ∗

Consider the execution of a proceduremby the current threadtid . We assumem is ac-
companiedbya specification consistingof threeparts: (1) an invariantI(m)∈SpecPredicate
that must be maintained by all threads while executingm, (2) an environment assumption
E(m) ∈ SpecActionthat models the behavior of threads executing concurrently withtid ’s
execution ofm, and (3) an abstractionA(m) ∈ SpecStmtthat summarizes the behavior of
threadtid executingm. Note that the abstractionA(m) does not contain any procedure
calls.
In order for the abstractionA(m) to be correct, we require that the implementationB(m)

be simulated byA(m) with respect to the environment assumptionE(m). Informally, this
simulation requirement holds if, assuming other threads perform actions consistent with
E(m), each action of the implementation corresponds to some action of the abstraction. The
abstraction may allow more behaviors than the implementation, and may go wrong more
often. If the abstraction does not go wrong, then the implementation also should not go
wrong and each implementation transition must be matched by a corresponding abstraction
transition.When the implementation terminates the abstraction should be able to terminate
as well.
We formalize the notion of simulation between (multithreaded) programs.We first define

the notion of subsumption between traces. Intuitively, a trace� is subsumed by a trace�′ if
either�′ is identical to� or �′ behaves like a prefix of� and then goes wrong. Formally, a

trace�1
t1−→ �2 · · ·�k tk−→ � is subsumedby a trace�′1

t ′1−→ �′2 · · ·�′l
t ′l−→ �′ if (1) l�k,

(2) for all 1� i� l, we have�i = �′i andti = t ′i , and (3) either�′ = wrong or l = k and
�′ = �. A pathset�1 is simulatedby the pathset�2, written�1  �2 if every trace of�1
is subsumed by a trace of�2, and every full trace of�1 is subsumed by a full trace of�2.
A programP is simulatedby a programQ, writtenP  Q, if [[P ]] is simulated by[[Q]].
For any actionE ∈ SpecActionand a thread identifierj, let Fix(E, j) ∈ Actionbe the

actionwhoseexecutionbya threadtmimics theexecutionofEby threadj. Formally,wehave
Fix(E, j) = {(t, (�, �), (�′, �′)) | (j,�,�′) ∈ E}. Given a statementB, an environment
assumptionE, and an integerj ∈ Tid, let P(B,E, j) be the program in which thej-th
thread isB and every other thread isFix(E, j)∗.

P(B,E, j) def= ‖ ((assume tid = j ;B)�(assume tid �= j ;Fix(E, j)∗)).
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A statementB is simulatedby a statementAwith respect to an environment assumptionE,
writtenB  E A, if the programP(B,E, j) is simulated by the programP(A,E, j) for
all j ∈ Tid.
Apart from being simulated byA(m), the implementationB(m) must also satisfy two

other properties. First, every atomic operation executed by threadt during the execution of
B(m)must preserve the invariantI(m). Second, the executionmust satisfy the environment
assumption of any threadj other thant executing in any procedurem′. The environment
assumption of a procedure (for threadt) must be strong enough so that environment as-
sumptions of all procedures (for a threadj different from t) can be verified with its aid.
This requirement is undesirable because it would require a procedure to know about the
details of its clients. Our methodology weakens this requirement without losing soundness
and requires us to verify the environment assumptions of only those procedures that are
transitively called fromm. Let� be thecalls relation on the setProc of procedures such
thatm�l iff procedurem calls the procedurel. Let�∗ be the reflexive-transitive closure
of�. We define a derived environment assumption for proceduremas

Ê(m) = ∧
m�∗l

E(l).

We can check thatB(m) is simulated byA(m) and also satisfies the aforementioned
properties by checking thatB(m) is simulated by a derived abstraction̂A(m). This derived
abstractionÂ(m) is obtained fromA(m) by replacing every atomic operationr?Z inA(m)
by r̂?Ẑ defined as follows:

(t,�) ∈ r̂ def= ∧ (t,�) ∈ r
∧ (t,�) ∈ I(m),

(t,�,�′) ∈ Ẑ def= ∧ (t,�,�′) ∈ Z
∧ (t,�′) ∈ I(m)
∧ ∀j ∈ Tid : j �= t ⇒ (j,�,�′) ∈ Ê(m)

In order to check simulation for a procedurem, we first inline the derived abstractions
for procedures called fromB(m). We replace the call to a procedurem′ in the body of
m by PreserveLocals(Â(m′)), where the functionPreserveLocalsis defined below. The
application of this function ensures that the inlined abstraction does not change the local
variables ofm.

PreserveLocals(r)
def= {(t, (�, �)) | r(t,�)}

PreserveLocals(Z)
def= {(t, (�, �), (�′, �)) | Z(t,�,�′)}

PreserveLocals(r?Z)
def= PreserveLocals(r)?PreserveLocals(Z)

PreserveLocals(T1; T2) def= PreserveLocals(T1);PreserveLocals(T2)
PreserveLocals(T1�T2) def= PreserveLocals(T1)�PreserveLocals(T2)
PreserveLocals(T ∗) def= PreserveLocals(T )∗

WeuseInlineAbs: Stmt→ Stmtto denote this abstraction inliningoperation.We thencheck
thatInlineAbs(B(m)) is simulated byHavocLocals(Â(m))with respect to the environment
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assumptionÊ(m), where the functionHavocLocalsis defined below.
HavocLocals(r)

def= {(t, (�, �)) | r(t,�)}
HavocLocals(Z)

def= {(t, (�, �), (�′, �′)) | Z(t,�,�′)}
HavocLocals(r?Z)

def= HavocLocals(r)?HavocLocals(Z)
HavocLocals(T1; T2) def= HavocLocals(T1);HavocLocals(T2)
HavocLocals(T1�T2) def= HavocLocals(T1)�HavocLocals(T2)
HavocLocals(T ∗) def= HavocLocals(T )∗

Note that the recursive definition of the two functionsPreserveLocalsandHavocLocals
differs only in the case of actions. WhileHavocLocals(Z) allows arbitrary updates to the
local variables,PreserveLocals(Z) leaves the local variables unchanged. The following
theorem formalizes our modular verification methodology.

Theorem 1. For each procedurem ∈ Proc, let its bodyB(m) ∈ Stmt, abstractionA(m) ∈
SpecStmt, environment assumptionE(m) ∈ SpecAction, and invariant I(m) ∈
SpecPredicate be given. LetP = ‖ l() be a parallel program. Suppose for all proce-
duresm ∈ Proc, the statement InlineAbs(B(m)) is simulated by HavocLocals(Â(m)) with
respect to the environment assumptionÊ(m). Then the following are true.
(1) P is simulated byQ = ‖ HavocLocals(Â(l)).
(2) If � ∈ I(l), HavocLocals(A(l)) is simulated by true∗ with respect toÊ(l), and�

t1−→
· · · tk−→ � is a trace ofP , then� �= wrong and� ∈ I(l).

By verifying simulation for each procedure, the modular verification theorem allows us
to conclude two results. First, the programP = ‖ l() is simulated by a programQ in
which every thread executes the derived specification ofl. Second, if the specification ofl
is simulated bytrue ∗ (a statement in which no atomic operation goes wrong) with respect
to its derived assumption, then the execution of every atomic operation in the specification
of l by a threadt satisfies the environment assumption of every procedure transitively called
from l for every thread other thant. This fact allows us to conclude that the parallel program
Qwill not go wrong if it begins execution in a global store satisfyingI(l).
The proof of this theorem is given in AppendixA. Discharging the proof obligations in

this theorem requires a method for checking simulation between two statements without
procedure calls, which is the topic of the following section.
Themodular verificationmethodologyadvocated in this section is designed to decompose

the problem of verifying a large multithreaded program into a set of smaller and more
manageable problems, one for each procedure. The verification obligation for a procedure
depends on the call tree of the entire program. Hence, a module might have to be re-verified
if changes in the implementationof anothermodule results in amodificationof thecall tree.

5. Checking simulation

We first consider the simpler problem of checking that the atomic operationp?X is
simulated byq?Y . This simulation holds if (1) wheneverp?X goes wrong, thenq?Y also
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goes wrong, i.e.,¬p⇒ ¬q, and (2) wheneverp?X performs a transition,q?Y can perform
a corresponding transition or may go wrong, i.e.,p ∧ X ⇒ ¬q ∨ Y . The conjunction of
these two conditions can be simplified to(q ⇒ p) ∧ (q ∧X⇒ Y ).
The following atomic operationsim(p?X, q?Y ) checks simulation between the atomic

operationsp?X andq?Y ; it goes wrong from states for whichp?X is not simulated byq?Y ,
blocks in states whereq?Y goes wrong, and otherwise behaves likep?X. The definition
uses the notation∀V ar ′ to quantify over all primed (post-state) variables.

sim(p?X, q?Y )
def= ((q ⇒ p) ∧ (∀Var′. q ∧X⇒ Y ))?(q ∧X).

Wenowextendourmethod tochecksimulationbetweenan implementationBandanabstrac-
tionAwith respect to an environment assumptionE. Let I be the invariant associated with
the implementationB; e.g., ifB is InlineAbs(B(m)) for some procedurem, thenI is I(m).
We assume that the abstractionA consists ofn atomic operationsI?Y1, I?Y2, . . . , I?Yn
interleaved with stuttering stepsI?K, preceded by an asserted preconditionpre?〈true 〉,
and ending with the assumed postconditiontrue ?〈post〉:

A
def= pre?〈true 〉;
(I?K∗; I?Y1); . . . ; (I?K∗; I?Yn);
I?K∗; true ?〈post〉

This restriction onA enables efficient simulation checking and has been sufficient for all
our case studies. Our method may be extended to more general abstractionsA at the cost of
additional complexity.
Ourmethod translatesB,A, andE into a sequential programsuch that if that programdoes

not go wrong, thenB is simulated byAwith respect toE.We need to check that wheneverB
performs an atomic operation, the statementAperforms a corresponding operation. In order
to perform this check, the programmer needs to add anauxiliary variablepc ranging over
{1,2, . . . , n+ 1} toB, so that each atomic operation inB updatespcas well as the original
program variables. The value ofpc indicates the operation inA that will simulate the next
operation performed inB. The variablepc is initialized to 1. An atomic operation inB can
either leavepcunchanged or increment it by 1. If the operation leavespcunchanged, then
the corresponding operation inA isK. If the operation changespc from i to i + 1, then the
corresponding operation inA is Yi . Thus, each atomic operation inB needs to be simulated
by the following atomic operation:

W
def= I?

(
n∨
i=1
(pc= i ∧ pc′ = i + 1∧ Yi) ∨ (pc= pc′ ∧K)

)

Using the above method, we generate the sequential program[[B]]EA which performs the
simulation check at each atomic action, and also precedes each atomic action with the
iterated environment assumption that models the interleaved execution of other threads.
Thus, theprogram[[B]]EA is obtainedby replacingeveryatomicoperationp?X in theprogram
Bwith the codePreserveLocals(E∗); sim(p?X,W). The following program extends[[B]]EA
with constraints on the initial and final values ofpc.

assume pre∧ pc= 1; [[B]]EA;PreserveLocals(E∗);assert post∧ pc= n+ 1
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This program starts execution from the set of states satisfying the preconditionpre and
asserts the postconditionpostat the end. Note that this sequential program is parameterized
by the thread identifiertid . If this programcannot gowrong for any non-zero value oftid ,
then we conclude thatB is simulated byAwith respect toE.We leverage existing sequential
analysis techniques (based on verification conditions and automatic theorem proving) for
this purpose.

6. Implementation

We have implemented our modular verification method for multithreaded Java programs
in an automatic checking tool called Calvin. This section provides an overview of Calvin,
including a description of its annotation language and various performance optimizations
that we have implemented.

6.1. Checker architecture

The Calvin checker takes as input a Java program, together with annotations describ-
ing candidate environment assumptions, procedure abstractions, invariants, and asserted
correctness properties, and outputs warnings and error messages indicating if any of these
properties are violated. Calvin starts by parsing the input program to produce abstract syn-
tax trees (ASTs). After type checking, these abstract syntax trees are translated into an
intermediate representation language that can express Plato syntax[31]. The translation of
annotations into Plato syntax is described in Section 6.3.
Calvin then uses the techniques of this paper, as summarized by Theorem 1, to verify

this intermediate representation of the program. To verify that each procedurep satisfies
its specification, Calvin first inlines the abstraction of any procedure call fromp. (If the
abstraction is not available, then the implementation is inlined instead.)Next,Calvin uses the
simulation checking technique of the previous section to generate a sequential “simulation
checking” programS.
To check the correctness ofS, a verification condition is generated according to the

following translation,1 which is based on Dijkstra’s weakest precondition translation [15].

vc(p?X,Q) = p ∧ ∀$x′. X($x, $x′)⇒ Q[$x := $x′]
where$x denotes the variables modified byX

vc(x := e,Q) = Q[x := e]
vc(S1; S2,Q) = vc(S1, vc(S2,Q))
vc(S1�S2,Q) = vc(S1,Q) ∧ vc(S2,Q)

vc(S∗,Q) = vc(skip �(S; (skip �S)),Q)
This translation can handle arbitrary atomic operations, but uses a specialized translation
for particular atomic operations such as assignments. Following ESC/Java, Calvin provides

1Note that this translation may generate exponentially large verification conditions. To avoid this problem,
Calvin actually uses a semantically equivalent translation that generates compact verification conditions, as de-
scribed in an earlier paper[24]. A detailed description of that translation is outside the scope of this paper.
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two options for translating loops. One option is for the programmer to explicitly provide
a loop invariant. A second, more convenient option, which we used in our experiments,
is simply to unroll each loop a small number of times, as shown in the above translation.
Although unsound, this approach has proved adequate in practice to detect a range of defects
using both ESC/Java and Calvin.
The generated verification condition is then fed into the theorem prover Simplify[38,14].

This theorem prover is fully automatic and requires no interaction with the programmer. It
may, however, fail to terminate, in which case Calvin reports a time-out after five minutes.
If the theorem prover detects that the verification condition is invalid, then it generates a
counterexample, which is then post-processed into an appropriate error message in terms of
the original Java program. Typically, the error message either identifies an atomic step that
may violate one of the stated invariants, environment assumptions, or abstraction steps, or
the error message may identify an assertion that could go wrong. This assertion may either
be explicit, as in the example programs of Section 3, or implicit, such as, for example,
that a dereferenced pointer is never null. Conversely, if the theorem prover verifies the
validity of the verification condition, then Calvin concludes that the procedure implements
its specification and that the stated invariants and assertions are true.
The implementation of Calvin leverages extensively off the Extended Static Checker for

Java, which is a powerful checking tool for sequential Java programs. For more information
regarding ESC/Java, we refer the interested reader to a recent paper [22].

6.2. Handling Java threads and monitors

In our implementation, thread identifiers are either references to objects of type
java.lang.Thread or a special valuemain (different from all object references)
that refers to the program’s initial thread. Thread creation is modeled by introducing an
abstract instance field2 start into the java.lang.Thread class. When a thread is
created, this field is initialized to false. When a created thread is forked, this field is set to
true. The following assume statement is implicit at the beginning of the main method:

assume tid = main

The following assume statement is implicit at the beginning of the run method in any
runnable class:

assume tid = this ∧ tid .start

The implicit lock associated with each Java object is modeled by including in each
object an additional abstract fieldholder of typejava.lang.Thread , which is either
null or refers to the thread currently holding the lock. The Java synchronization statement

2An abstract variable is one that is used only for specification purposes and is not originally present in the
implementation.
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synchronized(x){S} is desugared into

〈x.holder = null ∧ x.holder ′ = tid 〉x.holder ;
S;
〈x.holder ′ = null 〉x.holder

For the sake of simplicity, our checker assumes a sequentially consistent memory model
and that reads and writes of primitive Java types are atomic.

6.3. Annotation language

This section describes the source annotations for each procedurep. The annotation
env_assumption provides environment assumptions. Each class may have multiple
such annotations, each of which provides an action (that may refer totid ). The envi-
ronment assumption of a class is the conjunction of all these actions. The environment
assumptionE(p) of a methodp is the conjunction of the environment assumption of the
class containingp and of all classes whose methods are transitively called byp.
The annotationglobal_invariant provides invariants. Each class may have multi-

ple such annotations, with each annotation providing a predicate. The invariant of a class
is the conjunction of the predicates in all these annotations. The invariant of a methodp is
the invariant of the class containingp.
The abstraction of a methodp is specified using the following notation:

requires pre
modifies c
action : also_modifies v1 ensures e1
. . .

action : also_modifies vn ensures en
ensures post

wherec, v1, . . . , vn are sets of variables,pre is a single-store predicate, ande1, . . . , en,post
are actions.
From the above notation, we construct the abstraction statementA(p) as follows:

(1) Weconstruct the following guaranteeGbased on the assumption that actions ofpshould
not violate the environment assumptions ofp for other threads.

G
def= ∀Thread j : (j �= null ∧ j �= tid )⇒ E(p)[tid := j ]

(2) If I is the invariant ofp, we combine the various annotations into the following abstrac-
tion statementA(p):

pre?〈true 〉;
I?〈G ∧ I ′〉c∗; I?〈e1 ∧G ∧ I ′〉c∪v1;
. . .

I?〈G ∧ I ′〉c∗; I?〈en ∧G ∧ I ′〉c∪vn;
I?〈G ∧ I ′〉c∗;
true ?〈post〉
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The stuttering steps should satisfyG and only modify variables inc. Eachaction:
block in the annotations corresponds to an atomic operation in the abstraction; this
atomic operation can modify variables inc andvi , it should satisfy bothei and the
guaranteeG, and therequires actionpre is asserted to hold initially. Finally, every
step is required to maintain the invariance ofI.

ComparingA(p) with the notation in Section5, we see thatYi is 〈e1 ∧G ∧ I ′〉c∪v1 and
K is 〈G ∧ I ′〉c.

6.4. Optimizations

Calvin reduces simulation checking to the correctness of the sequential “simulation
checking” program. The simulation checking program is often significantly larger than
the original procedure implementation, due in part to the iterated environment assump-
tion inserted before each atomic operation. To reduce verification time, Calvin simplifies
the program before attempting to verify it. In particular, we have found the following two
optimizations particularly useful for simplifying the simulation checking program:
• In all our case studies, the environment assumptions were reflexive and transitive. There-
fore, our checker optimizes the iterated environment assumptionE∗ to the single actionE
after using the automatic theoremprover to verify thatE is indeed reflexive and transitive.

• The environment assumption of a procedure can typically be decomposed into a conjunc-
tion of actions mentioning disjoint sets of variables, and any two such actions commute.
Moreover, assuming the original assumption is reflexive and transitive, each of these ac-
tions is also reflexive and transitive. Consider an atomic operation that accesses a single
shared variablev . An environment assertion is inserted before this atomic operation, but
all actions in the environment assumption that do not mentionv can be commuted to the
right of this operation, where they merge with the environment assumption associated
with the next atomic operation. Thus, we only need to precede each atomic operation
with the actions that mention the shared variable being accessed.

7. Applications

7.1. The Apprentice challenge problem

Moore and Porter[37] introduced the Apprentice example as a challenge problem for
multithreaded software analysis tools. The Apprentice example contains three classes:
Container , Job andApprentice (see Fig. 7). The classContainer has an integer
field counter . The classJob , which extendsThread , has a fieldobjref pointing to a
Container object. The classApprentice contains themain routine.
After k iterations of the loop inmain , there arek + 1 concurrently executing threads

consisting of one main thread andk instances ofJob . We would like to prove that in
any concurrent execution the fieldcounter of any instance ofContainer takes a se-
quence of non-decreasing values.3 This property is stated by the following annotation in

3Calvin treats theint type as unbounded unlike the 32-bit semantics in Java.
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class Container { int counter; }

class Job extends Thread {
Container objref;

public final void run() {
for (;;) {

synchronized(objref) { objref.counter = objref.counter + 1; }
}

}
}

class Apprentice {
public static void main(String[] args) {

Container container = new Container();
for (;;) {

Job job = new Job();
job.objref = container;
job.start();

}
}

}

Fig. 7. The Apprentice challenge.

theContainer class.

/*@ env_assumption \old(counter) <= counter */

Note that this property could be violated in several ways.A threadt executing themethod
t.run readst.objref thrice during one iteration of the loop:
(1) to obtain the monitor on the object pointed to byt.objref ,
(2) to readt.objref.counter , and
(3) to writet.objref.counter .
If another threadmodifiest.objref fromo1 too2 between the second and third reads, then
the valuewrittenby threadt intoo2.counter maybe less than its previous value.Moreover,
even if other threads do not modifyt.objref , theymight incrementt.objref.counter
more than once between the read and the write oft.objref.counter . This interference
might again cause a similar violation.
The environment assumption stated above is not strong enough to analyze each thread

separately in Calvin. We also need to specify the conditions under which the environment
of a thread can modify the fieldscounter andobjref . We add the annotation

/*@ unwritable_by_env_if holder == tid */

to the fieldcounter to indicate that for any instanceo of Container , if thread t
holds the monitor ono then the environment oft may not modifyo.counter . Thus,
unwritable_by_env_if annotations provide a simple and concise way of writing
environment assumptions. For example, theunwritable_by_env_if annotation
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shown above on the fieldcounter is semantically equivalent to the following
annotation:

/*@ env_assumption (holder == tid)
==> (counter == \old(counter))*/

We also add the annotation

/*@ unwritable_by_env_if tid == main || objref != null */

to the fieldobjref . In this annotation,main refers to the main thread. This annota-
tion specifies that for any instanceo of Job , the environment ofmain must not modify
o.objref . In addition, evenmain must not modifyo.objref if o.objref is differ-
ent fromnull . Using these annotations, Calvin is successfully able to verify the original
environment assumption together with the environment assumptions induced by these an-
notations.
We now introduce a bug in the Apprentice example as suggested by Moore and Porter.

public static void main(String[] args) {
Container container = new Container();
Container bogus = new Container();
for (;;) {

Job job = new Job();
job.objref = container;
job.start();
job.objref = bogus;

}
}

In this buggy implementation, the threadmain mutatesjob.objref again afterjob
has started. As mentioned above, such behavior might cause thecounter field of some
Container object to decrease.
Calvin produces the following warning for the modified Apprentice example:

Apprentice.java:29: Warning: Write of variable when
not allowed

job.objref = bogus;

Associated declaration is "Apprentice.java", line 9, col 8:
/*@ unwritable_by_env_if (tid == main || objref != null) */

This warning indicates thatmain violates the requirement thatjob.objref should not
be modified once it has been initialized.

7.2. The Mercator web crawler

Mercator[26] is a web crawler which is part of Altavista’s Search Engine 3 product. It
is multithreaded and written entirely in Java. Mercator spawns a number ofworkerthreads
to perform the web crawl and write the results to shared data structures in memory and
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/*@
requires holder == tid
modifies hasWriter
action:

also_modifies writer
ensures writer == null

&& writer’ == tid
*/
public void beginWrite() {
...

}

holder = tid ?〈true 〉;
true ?〈true 〉hasWriter∗;
true ?

〈
writer = null
∧ writer ′ = tid

〉
{hasWriter ,writer }

;
true ?〈true 〉hasWriter∗

Fig. 8. Specifying readers–writer lock.

on disk. To help recover from failures, Mercator also spawns abackgroundthread that
writes a snapshot of its state to disk at regular intervals. Synchronization between these
threads is achieved using two kinds of locks: mutual exclusion locks andreaders–writer
locks.
We focused our analysis efforts on the part of Mercator’s code (about 1500 LOC) that

uses readers–writer locks.We first provided a specification of the readers–writer lock imple-
mentation (classReadersWriterLock ) in terms of two abstract variables—writer ,
a reference to aThread object, andreaders , a set of references toThread objects. If
a thread owns the lock in write mode thenwriter contains a reference to that thread and
readers is empty, otherwisewriter is null andreaders is the set of references to
all threads that own the lock in read mode.
Consider the procedurebeginWrite that acquires the lock in write mode by setting a

program variablehasWriter of typeboolean . The specification ofbeginWrite and
the corresponding Plato code are shown in Fig. 8.
The next step was to annotate and check the clients ofReadersWriterLock to ensure

that they follow the synchronization discipline for accessing shared data. The part of Mer-
cator that we analyzed uses two readers–writer locks—L1 andL2 . We use the following
unwritable_by_env_if annotation to state that before modifying the variabletbl ,
the background thread should always acquire lockL1 in write mode, but a worker thread
need only acquire the mutex on lock objectL2 .

/*@ unwritable_by_env_if (tid == backgroundThread
&& L1.writer == tid)

|| (tid instanceof Worker
&& L2.holder == tid) */

private long[][]tbl; // the in-memory table

We also provided specifications of public methods that can access the shared data and
used inlining to avoid annotating non-public methods.
Overall, we needed to insert 55 annotations into the source code. The majority of these

annotations (21) were needed to specify and prove the implementation of readers–writer
locks. However, once the readers–writer class is specified, its specification can be re-used
when checking many clients of this class.
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Interface annotations (apart from those inReadersWriterLock ) numbered 16, and
largely consisted of constraints on the type of thread that could call a method, and about
locks that needed to be held on entry to a method.
We did not find any bugs in the part of Mercator that we analyzed; however, we injected

bugs of our own, and Calvin located those. In spite of inlining all non-public methods,
the analysis took less than 10min for all except one public method. The exception was a
method of 293 lines (after inlining non-public method calls), on which the theorem prover
ran overnight to report no errors.

7.3. The java.util.Vector library

We ran Calvin on the classjava.util.Vector (about 400 LOC) from JDKv1.2.
There are two shared fields: an integerelementCount , which contains the number of
elements in the vector, and an arrayelementData , which stores the elements. These
variables are protected by the lock on theVector object.

/*@ unwritable_by_env_if this.holder == tid */
protected int elementCount;
/*@ unwritable_by_env_if this.holder == tid */
protected Object elementData[];

/*@ global_invariant (0 <= elementCount)
&& (elementCount <= elementData.length)*/

/*@ global_invariant elementData != null */

Based on the specifications, Calvin detected a race condition illustrated in the following
excerpt.

public int lastIndexOf(Object elem) {
return lastIndexOf(elem, elementCount-1); // RACE!

}
public synchronized int lastIndexOf(Object elem, int index)
{

....
for (int i = index; i >= 0; i--)

if (elem.equals(elementData[i]))
....

}
....
synchronized void trimToSize() { ... }
synchronized boolean removeAllElements() { ... }

Suppose there are two threads manipulating aVector objectv . The first thread calls
v.lastIndexOf(Object) , which readsv.elementCount without acquiring the
lock onv . Now suppose that before the first thread callslastIndexOf(Object,int) ,
the second thread callsv.removeAllElements() , which setsv.elementCount to
0, and then callstrimToSize() , which resetsv.elementData to be an array of length
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0. Then, when the first thread tries to accessv.elementData based on the old value of
v.elementCount , it will trigger an array out-of-bounds exception. An erroneous fix for
this race condition is as follows:

public int lastIndexOf(Object elem) {
int count;
synchronized(this) { count = elementCount-1; }
return lastIndexOf(elem, count);

}

Even though the lock is held whenelementCount is accessed, the original defect still re-
mains. RCC/Java[19], a static race detection tool, caught the original defect in theVector
class, but will not catch the defect in the modified code. Calvin, on the other hand, still re-
ports this error aswhat it is: a potential array out-of-bounds error. The defect can be correctly
fixed by declaringlastIndexOf(Object) to besynchronized .

8. Related work

A variety of static and dynamic checkers have been built for detecting data races in mul-
tithreaded programs [4,10,44,41,22]; however, these tools are limited to checking a subset
of the synchronization mechanisms found in systems code. For example, RCC/Java [19,20]
is an annotation-based checker for Java that uses a type system to identify data races.While
this tool is successful at finding errors in large programs, the inability to specify subtle
synchronization patterns results in false alarms. Moreover, these tools cannot verify invari-
ants or check refinement of abstractions. The methods proposed by Engler et al. [17,18] for
checking and inferring simple rules on code behavior are scalable and surprisingly effective,
but cannot check general invariants.
Several tools verify invariants onmultithreaded programs using a combination of abstract

interpretation andmodel checking.TheBandera toolkit [16] uses programmer-supplied data
abstractions to translate multithreaded Java programs into the input languages of various
model checkers. Yahav [46] describes a method to model check multithreaded Java pro-
grams using a 3-valued logic [40] to abstract the store. Since these tools explicitly consider
all interleavings of the multiple threads, they have difficulty scaling to large programs. Ball
et al. [8] present a technique for model checking a software library with an unspecified
number of threads that are identical and finite-state. Bruening [11] has built a dynamic as-
sertion checker based on state-space exploration for multithreaded Java programs. His tool
concurrently runs an Eraser-like [41] race detector to ensure the absence of races, which
guarantees thatsynchronized code blocks can be considered atomic. Stoller [45] pro-
vides a generalization of Bruening’s method to allow model checking of programs with
either message-passing or shared-memory communication. Both of these approaches focus
on mutex-based synchronization and operate on the concrete program without any abstrac-
tion.
The compositional principle underlying our technique is assume-guarantee reasoning, of

which there are several variants. One of the earliest assume-guarantee proof rules was de-
veloped byMisra and Chandy [35] for message-passing systems, and later refined by others
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(e.g.,[29,39,36]). However, their message-passing formulation is not directly applicable to
shared-memory software.
Themost closely relatedpreviouswork is that byJones [28] andbyAbadi andLamport [1].

Jones [28,27] gave a proof rule for multithreaded shared-memory programs and used it to
manually refine an assume-guarantee specification down to a program. This proof rule
of Jones allows each thread in a multithreaded program to be verified separately, but the
program for each thread does not have any procedure calls. We have extended Jones’ work
to allow the proof obligations for each thread to be checked mechanically by an automatic
theoremprover, andourextensionalsohandlesprocedurecalls.Theuseofassume-guarantee
reasoning to analyzemultithreaded Java programs has also been explored byErikaÁbrahám
et al. [3,2]. Their approach is based on an extension of Hoare-style triples, and so requires
assertions at each program point.
Stark [43] also presented a rule for shared-memory programs to deduce that a conjunc-

tion of assume-guarantee specifications hold on a system provided each specification holds
individually, but his work did not allow the decomposition of the implementation. Com-
positional techniques similar to assume-guarantee reasoning have been used to perform
refinement in the setting of action systems as well [7].
Abadi and Lamport [1] consider a composition of components, where each component

modifiesaseparatepart of the store.Their system isgeneral enough tomodel amultithreaded
program since a component can model a collection of threads operating on shared state and
signaling among components canmodel procedure calls. However, their proof rule does not
allow each thread in a component to be verified separately. Collette and Knapp [13] extend
Abadi and Lamport’s approach to the more operational setting of Unity specifications [12].
Alur and Henzinger [5] and McMillan [34] have presented assume-guarantee proof rules
for hardware components.
In recent work [25], we have begun to explore an extension to the abstraction mechanism

presented here. We augment simulation-based abstraction with the notion of reduction,
which was first introduced by Lipton [32]. Reduction permits us to identify sequences of
steps in a procedure that are guaranteed to execute without interference. Such “atomic”
sequences can be summarized by a single step in procedure specifications, thereby making
specifications more concise in some cases.

9. Conclusions

We have presented a new methodology for modular verification of multithreaded pro-
grams, based on combining the twin principles of thread-modular reasoning and procedure-
modular reasoning. Our experiencewith Calvin, an implementation of thismethodology for
multithreaded Java programs, shows that it is scalable and sufficiently expressive to check
interesting properties of real-world multithreaded systems code.

Appendix A. Proof of modular verification theorem

Lemma A.1. If the statementl() is simulated by the statement HavocLocals(Â(l)) with
respect toÊ(l), then the program‖ l() is simulated by the program‖HavocLocals(Â(l)).



C. Flanagan et al. / Theoretical Computer Science 338 (2005) 153–183 177

Proof. Let

P
def= ‖ l()

Q
def= ‖ HavocLocals(Â(l))

Pj
def= P(l() , Ê(l), j)

Qj
def= P(HavocLocals(Â(l)), Ê(l), j)

We prove that if� is a trace ofP, then there is a trace�′ ofQ such that (1)� is subsumed by
�′, and (2) if�′ does not go wrong, then� is a trace ofPj for all 1�j�n. The proof is by
induction on the length of�.
• Base Case: Let � = �. This trivial trace clearly satisfies the desired property.
• Induction Step: Suppose� corresponds to a runra of P, where

ra = (�0, za0)
|t1,a1|−−−−→ (�1, za1) · · · (�k−1, zak−1)

|tk,ak |−−−−→ (�k, zak )
|j,a|−−−−→ (�a, za)

Let r be the prefix ofra that excludes the last transition. By the induction hypothesis, there
is a runrd of Q given by

rd = (�0, zd0)
|t1,d1|−−−−→ (�1, zd1) · · · (�l−1, zdl−1)

|tl ,dl |−−−−→ (�d , zd)

such thattrace(rd) subsumestrace(r).
If �d = wrong, thentrace(rd) also subsumestrace(ra) = � and we are done.
Otherwise�d = �k �= wrong, l = k, and there is a runrb of Pj given by

rb = (�0, zb0)
|t1,b1|−−−−→ (�1, zb1) · · · (�k−1, zbk−1)

|tk,bk |−−−−→ (�k, zbk).

First, we prove that� is subsumed by a trace ofQ. A run rab of Pj can be obtained from
ra andrb by replacing actions of threadj in rb by corresponding actions of threadj in ra
and adding the last action of threadj in ra to the end ofrb. This runrab has the property
thattrace(rab) = trace(ra) = �. SincePj is simulated byQj , there is a run ofQj given by

rc = (�0, zc0)
|t1,c1|−−−−→ (�1, zc1) · · · (�m−1, zcm−1)

|tm,cm|−−−−→ (�m, zcm)
|j,c|−−−−→ (�c, zc)

such thattrace(rc) subsumestrace(rab) = �. A run rcd ofQ can be obtained fromrc andrd
by replacing actions of threadj in rd by corresponding actions of threadj in rc. If m = k,
we also append the last action of threadj in rc to rd . This runrcd has the property that
trace(rcd) = trace(rc) and therefore it subsumes�.
We now prove that if�c �= wrong, then� is a trace ofPi for all i ∈ Tid. If �c �= wrong,

thenm = k and�c = �a andtrace(ra) = trace(rc) = �. Thus we get that� is a trace of
Pj . Now, picki ∈ Tid such thati �= j . By the induction hypothesis, there is a runre of Pi
given by

re = (�0, ze0)
|t1,e1|−−−−→ (�1, ze1) · · · (�k−1, zek−1)

|tk,ek |−−−−→ (�k, zek).

Wehave shown that there is a transition ofQof the form�k
|j,d|−−−−→ �a . From the definition

ofQ, the atomic operationd is of the formp̂?X̂ wherep̂⇒ I(l) andX̂⇒ (∀i ∈ Tid : i �=
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tid ⇒ Ê(l)). Thus, if�a �= wrong, thenÊ(l)(j,�k,�a) holds. Therefore, the runre of
Pi can be extended to

(�0, ze0)
|t1,e1|−−−−→ (�1, ze1) · · · (�k−1, zek−1)

|tk,ek |−−−−→ (�k, zek)
|j,Ê(l)|−−−−→ (�a, ze)

and we get that� is a trace ofPi . �

Lemma A.2. If a statement S is simulated by a statement T with respect to environment
assumption E andE′ implies E, then S is simulated by T with respect toE′.

Proof. Fix j ∈ Tid and let
Pj

def= P(S,E, j)
Qj

def= P(T ,E, j)
P ′j

def= P(S,E′, j)
Q′j

def= P(T ,E′, j).

Consider a runr = (�0, z0)
|t1,a1|−−−−→ (�1, z1) . . .

|tm,am|−−−−→ (�, z) of P ′j , for arbitrary j.

Consider all transitions�i−1
|ti ,ai |−−−−→ �i in r where ti �= j . For each such transition,

E′(j,�i−1,�i ) holds. Since,E′ impliesE,E(j,�i−1,�i ) holds. Therefore,r is a run ofPj .
SincePj  Qj , there exists a runr ′ = (�0, z′0)

|t1,b1|−−−−→ (�1, z′1) . . .
|tn,bn|−−−−→ (�′, z′)

of Qj such thattrace(r ′) subsumestrace(r). Consider any transition�i−1
|ti ,bi |−−−−→ �i in

r ′ whereti �= j . Sincetrace(r ′) = trace(r), bothE(j,�i−1,�i ) andE′(j,�i−1,�i ) hold.
Therefore,r ′ is also a run ofQ′j .
Thus, we getP ′j  Q′j for all j ∈ Tid and therebyS  E′ T . �

Weintroducesomeadditional notation for the remainderof thisappendix. LetPd(B,E,j)

be the parallel program inwhich thejth thread executesBwith the depth of its stack bounded
by d and every other thread executesE∗[tid := j ]. We writeB  dE A to indicate that the
programPd(B,E,j) is simulated by the programPd(A,E,j) for all j ∈ Tid.
Let ū be a path that is the concatenation ofn pathsū1, ū2, . . . , ūn. Let r1, r2, . . . , rn−1

be full runs ofū1, ū2, . . . , ūn−1, respectively, and letrn be a run ofūn, such that the last
state inri is the first state ofri+1 for 1� i < n. Then, we denote the corresponding runr of
ū by r1; r2; . . . ; rn.

Lemma A.3. Suppose for allm ∈ Proc, InlineAbs(B(m)) is simulated by the statement
HavocLocals(Â(m))with respect to the environment assumptionÊ(m).Then for alld ∈ N,
statements S, and environment assumptions E such thatE ⇒ Ê(l) whenever l is called by
S, we haveS  dE InlineAbs(S).

Proof. We proceed by induction over the depthd of the stack.
• Base case: Supposed = 0. By the definition of[[S]]0 andInlineAbs(S), we get[[S]]0 ⊆
[[InlineAbs(S)]]. ThereforeS  0

E InlineAbs(S).



C. Flanagan et al. / Theoretical Computer Science 338 (2005) 153–183 179

• Induction step: Supposed�1. We proceed by induction over the structure ofS. Fix an
E such thatE ⇒ Ê(m) wheneverm is called byS. Also, fix j ∈ T id.
◦ (S = a) : Then, InlineAbs(S) = a. Therefore,[[S]]d = [[InlineAbs(S)]], and so,
S  dE InlineAbs(S).◦ (S = S1; S2) : Consider a runr of Pd(S,E,j). There are two possible cases: (1)r
is a run ofPd(S1,E,j), or (2)r = r1; r2, r1 is a full run ofPd(S1,E,j), andr2 is a
run ofPd(S2,E,j).
Case1: By the induction hypothesis, we haveS1  dE InlineAbs(S1). Therefore, there

is a runr ′ of P(InlineAbs(S1), E, j) such thattrace(r) is subsumed bytrace(r ′). Since
r ′ is a run ofP(InlineAbs(S1), E, j), it is also a run of the programP(InlineAbs(S1);
InlineAbs(S2), E, j).
Case2: By the induction hypothesis, we have thatS1  dE InlineAbs(S1) andS2  dE

InlineAbs(S2). Then there is a full runr ′1 of P(InlineAbs(S1), E, j) such thattrace(r1)
is subsumed bytrace(r ′1). If r ′1 goes wrong, thenr ′1 is also a run ofP(InlineAbs(S1);
InlineAbs(S2), E, j) and we are done.
Otherwisetrace(r1) = trace(r ′1). Further, there is also a runr ′2 of P(InlineAbs(S2),

E, j) such thattrace(r2) is subsumed bytrace(r ′2). Let r ′ = r ′1; r ′2. Then, we get that
trace(r) is subsumed by trace(r ′) and r ′ is a run of P(InlineAbs(S1);
InlineAbs(S2), E, j).
SinceInlineAbs(S1; S2) = InlineAbs(S1); InlineAbs(S2), in both cases we get thatr ′

is a run ofP(InlineAbs(S1; S2), E, j).
◦ (S = S1�S2) : Consider a runr of Pd(S,E,j). Eitherr is a run ofPd(S1,E,j) or r is a
runofPd(S2,E,j). By the inductionhypothesis,wegetS1  dE InlineAbs(S1)andS2  dE
InlineAbs(S2). If r is a runofPd(S1,E,j), then there isa runr ′ ofP(InlineAbs(S1), E, j)
such thattrace(r) is subsumed bytrace(r ′). If r is a run ofPd(S2,E,j), then there is a
runr ′ ofP(InlineAbs(S2), E, j) such thattrace(r) is subsumed bytrace(r ′). Thus, there
is a runr ′ of P(InlineAbs(S1)�InlineAbs(S2), E, j) such thattrace(r) is subsumed by
trace(r ′). Since we also know thatInlineAbs(S1�S2) = InlineAbs(S1)�InlineAbs(S2),
we getr ′ is a run ofP(InlineAbs(S1�S2), E, j).

◦ (S = S1∗) : Consider a runr of Pd(S,E,j). Then, for somex > 0, there are runs
r1, r2, . . . , rx with the following properties: (1)r = r1; r2; . . . ; rx , (2) for all 0< i < x,
ri is a full run ofPd(S1,E,j), and (3)rx is a run ofPd(S1,E,j).
By the induction hypothesis, we haveS1  dE InlineAbs(S1). Therefore, for all 0< i <
x, there is a full runr ′i of P(InlineAbs(S1), E, j) such thattrace(ri) is subsumed by
trace(r ′i ). Moreover, there is a runr ′x of P(InlineAbs(S1), E, j) such thattrace(rx) is
subsumed bytrace(r ′x).
Case1: At least one ofr ′i (1� i�x) goes wrong. Letj be the leasti that goes wrong.

Let r ′ = r ′1; . . . ; r ′j . Thenr ′ is a run ofP(InlineAbs(S1)∗, E, j) andtrace(r ′) subsumes
trace(r).
Case2: No runr ′i (1� i�x) goes wrong. Letr ′ = r ′1; . . . ; r ′x . Thenr ′ is a run of

P(InlineAbs(S1)∗, E, j) andtrace(r ′) = trace(r).
In both case, we get a runr ′ of P(InlineAbs(S1)∗, E, j) such that trace(r ′)
subsumestrace(r). SinceInlineAbs(S1∗) = InlineAbs(S1)∗, we get thatr ′ is a run of
P(InlineAbs(S1∗), E, j).
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◦ (S = m() ) : Since the statementm() calls the procedurem, we haveE ⇒ Ê(m).
Moreover,Ê(m)⇒ Ê(l) wheneverl is called bym. ThereforeE ⇒ Ê(l) wheneverl is
called bym. From the induction hypothesis, we getB(m)  d−1E InlineAbs(B(m)). We

also have the premise thatInlineAbs(B(m))  Ê(m) HavocLocals(Â(m)). SinceE ⇒
Ê(m), we use LemmaA.2 to getInlineAbs(B(m))  E HavocLocals(Â(m)). It follows
thatB(m)  d−1E HavocLocals(Â(m)). Now, note the following two identities:
1. [[S]]d = {Push}; [[B(m)]]d−1; {Pop}.
2. InlineAbs(S) = PreserveLocals(Â(m)).
Note further that the two programsPd−1(HavocLocals(Â(m)),E,j) and
Pd−1(PreserveLocals(Â(m)),E,j) have identical sets of traces (for allj), andPush
andPoponly modify local state. Therefore, we conclude thatS  dE InlineAbs(S). �

Restatement of Theorem1. For each procedurem ∈ Proc, let its bodyB(m) ⊆ Stmt,
abstractionA(m) ⊆ SpecStmt,environment assumptionE(m) ⊆ SpecAction,and invariant
I(m) ⊆ SpecPredicate be given. LetP = ‖ l() be a parallel program. Suppose for all
proceduresm ∈ Proc, the statement InlineAbs(B(m)) is simulated by HavocLocals(Â(m))
with respect to the environment assumptionÊ(m). Then the following are true.
(1) P is simulated byQ = ‖ HavocLocals(Â(l)).
(2) If � ∈ I(l),HavocLocals(A(l)) is simulated bytrue ∗ with respect toÊ(l), and� t1−→

· · · tk−→ � is a trace ofP , then� �= wrong and� ∈ I(l).

Proof. We consider each part of the theorem in turn.
• Part 1: By LemmaA.3, we getl()  dÊ(l) InlineAbs(l() ) for all d�0. Therefore
l()  Ê(l) InlineAbs(l() ). SinceInlineAbs(l() ) = PreserveLocals(Â(l)) we know

that l()  Ê(l) PreserveLocals(Â(l)). Additionally, the two programsP(HavocLocals
(Â(l)), Ê(l), j) andP(PreserveLocals(Â(l)), Ê(l), j) have identical sets of traces, for
all j. Therefore,l()  Ê(l) HavocLocals(Â(l)). By LemmaA.1, we can conclude thatP
is simulated byQ.

• Part 2: By induction on the lengthmof a runr of P.
◦ Base case: Form = 0,�0 ∈ I(l), and hence the trivial runr does not end inwrong.
◦ Induction step: Letm > 0 and letr be the run

(�0, z0)
|t1,a1|−−−−→ (�1, z1) . . . (�n−1, zn−1)

|tn,an|−−−−→ (�, z),

where�0 ∈ I(l). By the induction hypothesis, we have that�0, . . . ,�n−1 ∈ I(l).
SinceP  Q, there is a runr ′ of Q such thattrace(r ′) subsumestrace(r). Let r ′ be
the run

(�0, z′0)
|t1,b1|−−−−→ (�1, z′1) . . . (�m−1, z′m−1)

|tm,bm|−−−−→ (�′, z′)

where for eachk, bk is p̂k?X̂k wherep̂k = pk ∧ I(l) andX̂k = Xk ∧ I ′(l) ∧ (∀i ∈
Tid : i �= tid ⇒ Ê(l)).
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Nowsincebk is of theabove form,trace(r ′) is alsoa traceof theprogramP(A(l), Ê(l),
tm), as elaborated below:

(1) For each state transition�k−1
|tm,bk |−−−−→ �k, since�k−1 ∈ I(l), we conclude that

�k−1
|tm,pk?Xk |−−−−−→ �k.

(2) For each state transition�k−1
|t,bk |−−−−→ �k wheret �= tm, Ê(l)(t,�k−1,�k) holds.

Furthermore, sinceA(l) is simulated bytrue ∗, we conclude thattrace(r ′) is a trace
of P(true∗, Ê(l), tm), which means that�′ �= wrong. Thereforen = m and�′ = �.
From the structure ofbm and the fact that�m−1 ∈ I(l) and� �= wrong, we conclude
that� ∈ I(l). �
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