
Type-Based Race Detection for Java (summary)

Cormac Flanagan Stephen N. Freund∗

Compaq Systems Research Center Department of Computer Science
130 Lytton Ave. Stanford University

Palo Alto, CA 94301 Stanford, CA 94305-9045
flanagan@pa.dec.com freunds@cs.stanford.edu

1 Introduction

A race may occur in a concurrent program when two
threads access a shared memory location at the same
time. This situation often causes unintended behavior
ranging from memory corruption to execution failure,
and races may be difficult to locate and fix, even after
their effects have been observed.

To avoid race conditions, programmers often adopt
a programming discipline in which shared resources are
guarded by locks. Before accessing any shared struc-
ture, the necessary lock must be acquired. This disci-
pline ensures that no two threads ever access the same
resource at the same time. Using locks in this fashion
shifts the problem of preventing races to one of enforc-
ing the locking discipline.

This summary describes a static analysis technique
that supports this locking strategy in concurrent Java
programs1. The analysis technique, which is presented
in the form of the static type system, was designed with
the following desirable features:

1. a sound formal foundation
2. low programmer overhead
3. the ability to check a reasonable set of program-

ming idioms

The following section describes an extension to the
Java type system that captures locking information; the
third section describes a prototype implementation, and
the fourth section summarizes our experiences with it.

2 Type System and Annotation Language

We build on an existing race-free type system for a con-
current object calculus [FA99]. To preserve compatibil-
ity with standard Java compilers, the additional type in-
formation used in the analysis is written in special com-
ments in the code, similar to those of escjava [LSS99,
DLNS98]. For example, the following class is a moni-
tored counter:

∗This work was completed while the author was employed at the
Compaq Systems Research Center.

1see [FF00] for a full discussion of this work

class Counter {
private int c = 0 /*# guarded_by this */;
private void set(int x) /*# requires this */ {
c = x;

}
public void increment() {
synchronized(this) {

set(c+1);
}

}
}

The guarded by annotation on the field c indicates
which lock must be held to access that field, and the
requires clause on the set method indicates which lock
(or locks) must be held prior to invoking that method.
To typecheck a program, a conservative approximation
of the set of locks held at each program point is deter-
mined, and the checker then verifies whether the con-
straints expressed in the annotations are satisfied on
each field access and method invocation.

As part of this verification process, the analysis needs
to determine whether a specific lock is in the lock set,
which requires some notion of equality between lock
names. Since our analysis cannot rely on run-time val-
ues, we approximate run-time value equivalence with
syntactic equality. This approximation is sufficient for
most of the programs we studied.

Another common programming idiom is to create
unsynchronized classes and require the client to pro-
vide the necessary synchronization. This type of class
may be expressed in our type system using classes pa-
rameterized by lock names, as shown below:

class Counter/*# {ghost Object o} */ {
private int value = 0 /*# guarded_by o */;
private void set(int x) /*# requires o */ {
value = x;

}
public void increment() /*# requires o */ {
set(value+1);

}
}

Object mutex = new Object();
Counter/*#{mutex}*/ c = new Counter/*#{mutex}*/();

It is often the case that a significant fraction of a
concurrent program does not use synchronization at
all. To avoid the need to require locks on objects that



Lines Programmer
Program Of Code Time (hrs) Annotations Races Found

java.util.Hashtable 440 0.5 60 0
java.util.Vector 430 0.5 10 1
java.io.* 16,000 16.0 139 4
Ambit 4,500 4.0 38 0
WebL 20,000 12.0 358 5

Table 1: Programs analyzed using rccjava.

are not shared between threads, we introduce the no-
tion of a thread local class into the type system. A
thread local class is a class whose instances are never
shared between threads, indicated with the annotation
thread local on the class declaration. This type of
class requires no synchronization on field accesses, and
a class may be thread local only if:

1. no instances of the class are stored in fields of a
shared class

2. the class is not a subclass of java.lang.Thread

The first requirement is checked with a simple escape
analysis.

One final feature added to the type system is an
escape mechanism to circumvent the analysis when it
is too restrictive. As usual, it is the programmer’s re-
sponsibility to ensure the validity of each use of these
escapes.

3 Implementation

Rccjava, a prototype type checker, was implemented as
an extension to an existing Java front-end. The main
additions to the standard Java type checker were the
algorithm to compute lock sets, the notion of syntac-
tic equality, and classes parameterized by lock names.
Several annotation inference techniques were also in-
corporated into the implementation in order to reduce
the number of annotations required for large programs,
including a technique to determine whether an unanno-
tated class is thread local or thread shared.

4 Experimental Results

The prototype implementation was used to check race
conditions in a number of programs. The test cases
include two representative single classes, the standard
Hashtable and Vector classes, and several large pro-
grams, including java.io, the Java input/output pack-
age (version 1.1) [Jav98]; Ambit, an implementation
of a mobile object calculus [Car97]; and an interpreter
and run-time environment for WebL, a language for au-
tomating web-based tasks [KM98].

Table 1 summarizes the number of annotations re-
quired by rccjava. The large number of annotations in

Hashtable may be attributed to the use of type parame-
ters which require an annotation on each reference to a
parameterized type name. The two larger examples re-
quired approximately 20 annotations per thousand lines
of code. One race was found in the Vector class, and
several races were found in the WebL code.

5 Conclusions and Further Work

The initial experiments with rccjava indicate that it is
a useful tool for detecting races. While more difficult to
use than dynamic tools like Eraser [SBN+97], it is not
subject to the same coverage problems as those tools.
In addition, the annotation overhead is lower than some
other static analysis techniques, such as using escjava.

The most important direction for future work is to
reduce the annotation requirements. We are currently
exploring better annotation inference algorithms and
the possibility of using feedback from dynamic tools to
help infer annotations.

References
[Car97] Luca Cardelli. Mobile ambient synchronization. Tech-

nical Report 1997-013, Digital Systems Research Cen-
ter, Palo Alto, CA, July 1997.

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson,
and James B. Saxe. Extended static checking. Re-
search Report 159, Compaq Systems Research Center,
December 1998.

[FA99] Cormac Flanagan and Mart́ın Abadi. Object types
against races. In Proceedings of CONCUR, August
1999.

[FF00] Cormac Flanagan and Stephen N. Freund. Type-based
race detection for Java. In Proceedings of ACM Con-
ference on Programming Language Design Implemen-
tation, June 2000.

[Jav98] JavaSoft. Java Developers Kit, version 1.1.
http://java.sun.com, 1998.

[KM98] Thomas Kistler and Johannes Marais. WebL – a pro-
gramming language for the web. Computer Networks
and ISDN Systems, 30:259–270, April 1998.

[LSS99] K. Rustan M. Leino, James B. Saxe, and Raymie
Stata. Checking Java programs via guarded com-
mands. Technical Report 1999-002, Compaq Systems
Research Center, Palo Alto, CA, May 1999.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas E. Anderson. Eraser: A dy-
namic data race detector for multi-threaded programs.
ACM Transactions on Computer Systems, 15(4):391–
411, 1997.

2


