
The FASTTRACK2 Race Detector
Working Draft — Technical Report CSTR201701, Revised: February 25, 2017

Cormac Flanagan
UC Santa Cruz

Stephen Freund
Williams College

Abstract
FASTTRACK is a precise and efficient dynamic race detector. In
the years since we initially designed that analysis, we have ex-
perimented with a number of different variants and implementa-
tion strategies. Drawing on the insights from those experiences, we
present here the FASTTRACK2 analysis and idealized implemen-
tation. FASTTRACK2 improves upon the original in several ways:
it refines several analysis rules, it is more readily translated into
an executable implementation, and that implementation enjoys a
simpler correctness argument while still exhibiting improved per-
formance when compared to our earlier prototype. Our Java imple-
mentation of FASTTRACK2 is available as part of the ROADRUN-
NER 0.5 distribution [4].

1. Introduction
Multithreaded programs are notoriously prone to race conditions
and other concurrency errors, such as deadlocks and atomicity vi-
olations. The widespread adoption of multi-core processors only
exacerbates these problems, both by driving the development of
increasingly-multithreaded software and by increasing the inter-
leaving of threads in existing multithreaded systems.

A race condition occurs when a program’s execution contains
two accesses to the same memory location that are not ordered by
the happens-before relation [9], where at least one of the accesses is
a write. Race conditions are particularly problematic because they
typically cause problems only on certain rare interleavings, mak-
ing them extremely difficult to detect, reproduce, and eliminate.
Consequently, much prior work has focused on static and dynamic
analysis tools for detecting race conditions. Please see other recent
work [5, 16] for a summary of many race detection techniques.

Typically, the happens-before relation is represented using vec-
tor clocks (VCs) [13], as in the DJIT+ race detector [14]. Vector
clocks are expensive, however, because they record information
about each thread in a system. Thus, if the target program has n
threads, then each VC requires O(n) storage space and each VC
operation requires O(n) time. FASTTRACK2 exploits the insight
that, while vector clocks provide a general mechanism for repre-
senting the happens-before relation, their full generality is not ac-
tually necessary in most cases. Indeed, the vast majority of data
in multithreaded programs is either thread local, lock protected, or
read shared. Our FASTTRACK2 analysis uses an adaptive repre-
sentation for the happens-before relation to provide constant-time
fast paths for these common cases, without any loss of precision or
correctness in the general case.

In this paper, we present the FASTTRACK2 analysis and imple-
mentation, which revisits a number of design and implementation
choices we made during our earlier work. In more detail, we

• refine several analysis rules based on our empirical studies and
to simplify implementations;

• express the analysis as a transition system more readily trans-
lated into executable code than the original;

• present an idealized implementation of FASTTRACK2 and show
corresponds to the specification; and

• implement FASTTRACK2 in the ROADRUNNER framework for
Java.

A primary motivation of this work is to improve our ability to rea-
son about the implementation of race detection analysis. Achiev-
ing good performance for a dynamic race detector like FAST-
TRACK can require sophisticated synchronization strategies. Over
the years, we have explored prototypes using everything from basic
mutual exclusion locks to various optimistic concurrency control
mechanisms. While the more sophisticated strategies have yielded
much better performance, their use has come with a cost; they rely
on subtleties of the analysis rules, complex data invariants, and
thorough knowledge of the underlying Java memory model [12]
and ROADRUNNER framework. As such, those implementations
have been difficult to design, implement, debug, and maintain.

Thus, a primary contribution of this work is an analysis spec-
ification and implementation strategy that is easier to understand,
implement, and reason about while still employing the synchro-
nization mechanism with good performance. Indeed, as we demon-
strate, FASTTRACK2 exhibits performance slightly better than our
previous versions.

Our development proceeds as follows:

• We formalize the FASTTRACK2 analysis algorithm and sketch
the correctness proof showing that it precisely detects data races
(Sections 2 and 3).

• We present an idealized implementation of the analysis as a
collection of event handling methods written in a Java-like
language (Section 5).

• We show that the implementation’s event handling methods are
serializable using existing techniques [6, 15, 7]. This facilitates
reasoning about the correctness of the code (Section 6).

• We discuss the correspondence between the event handlers and
formal rules (Section 7).

• We present a Java implementation based on the idealized code
and validate its performances on two common benchmark suites
(Sections 8 and 9).

2. Multithreaded Program Traces
We begin by formalizing the notions of execution traces and race
conditions. A program consists of a number of concurrently execut-
ing threads, each with a thread identifier t ∈ Tid , and these threads
manipulate variables x ∈ Var and locks m ∈ Lock :

1 2017/2/25

A trace α captures an execution of a multithreaded program by
listing the sequence of operations performed by the various threads.

α ∈ Trace ::= Operation∗

a, b ∈ Operation ::= rd(t, x) | wr(t, x)
| acq(t,m) | rel(t,m)
| fork(t, u) | join(t, u)

u, t ∈ Tid x, y ∈ Var m ∈ Lock

The set of operations that a thread t can perform include:

• rd(t, x) and wr(t, x) read and write a value from x;
• acq(t,m) and rel(t,m) acquire and release a lock m;
• fork(t, u) forks a new thread u; and
• join(t, u) blocks until thread u terminates.

The happens-before relation <α for a trace α is the smallest
transitively-closed relation over the operations1 in α such that the
relation a <α b holds whenever a occurs before b in α and one of
the following holds:

• Program order: The two operations are performed by the same
thread.

• Locking: The two operations acquire or release the same lock.
• Fork-join: One operation is fork(t, u) or join(t, u) and the

other operation is by thread u.

If a happens before b, then it is also the case that b happens after
a. If two operations in a trace are not related by the happens-before
relation, then they are considered concurrent. Two memory access
conflict if they both access (read or write) the same variable, and at
least one of the operations is a write. Using this terminology, a trace
has a race condition if it has two concurrent conflicting accesses.

We restrict our attention to traces that are feasible and which re-
spect the usual constraints on forks, joins, and locking operations,
i.e., (1) no thread acquires a lock previously acquired but not re-
leased by a thread, (2) no thread releases a lock it did not previ-
ously acquire, (3) each thread is forked at most once (4) there are
no instructions of a thread u preceding an instruction fork(t, u)
or following an instruction join(t, u), and (5) there is at least one
instruction of thread u between fork(t, u) and join(t′, u).

3. FASTTRACK2 Algorithm
We present in this section the formal specification of the FAST-
TRACK2 analysis, describe how it differs from the original FAST-
TRACK analysis, and outline the proof that the analysis is precise.
We refer the reader to our earlier paper on FASTTRACK for a more
comprehensive discussion of the intuition behind the analysis [3].

3.1 Preliminaries
A pair of a thread t and a clock c forms an epoch, denoted t@c. Al-
though rather simple, epochs provide the crucial lightweight repre-
sentation for recording sufficiently-precise aspects of the happens-
before relation efficiently. We define several operations on epochs
as follows:

t@c1 < t@c2 iff c1 < c2

t@c1 ≤ t@c2 iff c1 ≤ c2
max(t@c1, t@c2) = t@max(c1, c2)

1 In theory, a particular operation a could occur multiple times in a trace. We
avoid this complication by assuming that each operation includes a unique
identifier, but, to avoid clutter, we do not include this unique identifier in
the concrete syntax of operations.

t@c+ 1 = t@(c+ 1)

The <, ≤, and max operations are undefined if the two operands
are epochs for different threads. Epochs require only constant
space, independent of the number of threads in the program, and
all operations, including copying an epoch, are constant-time oper-
ations.

A vector clock VC : Tid → Epoch records an epoch for each
thread in the system. Vector clocks are partially-ordered (v) in a
point-wise manner, with an associated join operation (t) and mini-
mal element (⊥V). In addition, the helper function inct increments
the t-component of a vector clock:

V1 v V2 iff ∀t.V1(t) ≤ V2(t)

V1 tV2 = λt.max (V1(t),V2(t))

⊥V = λt. t@0

inct(V) = λu. if u = t then V (u) + 1 else V (u)

We assume all vector clocks are well-formed in that for all i, V (i)
contains an epoch for thread i, e.g. V (i) = i@c for some c.

An epoch t@c happens before a vector clock V (t@c � V)
if and only if the clock of the epoch is less than or equal to the
corresponding clock in the vector.

t@c � V iff t@c ≤ V (t)

Comparing an epoch to a vector clock (�) requires onlyO(1) time,
unlike vector clock comparisons (v), which requireO(n) time. We
use⊥e to denote a minimal epoch 0@0. (This minimal epoch is not
unique; for example, another minimal epoch is 1@0.)

3.2 Analysis State
FASTTRACK2 is an online algorithm that maintains an analysis
state S ∈ State; when the target program performs an operation
a, the analysis updates its state via the relation S ⇒a S′. State is
conceptually the union of three maps

S ∈ State : Tid → ThreadState
∪ Lock → LockState
∪ Var → V arState

where
ThreadState = { V :VC , E: Epoch }
LockState = { V :VC }
V arState = { V :VC , R: (Epoch ∪ {SHARED}),W :Epoch }

We use St, Sm, Sx to index the various parts of S. These state
components have the following meaning:

• St.V is the current vector clock of the thread t, and St.E is
the current epoch. The epoch is cached for efficiency in the
implementation, and the analysis maintains the invariant that
St.E = St.V (t).

• Sm.V is the vector clock capturing the time of the last release
of lock m.

• x.W identifies the epoch of the last write to x. Also, Sx.R
identifies the epoch of the last read from x, or is the special
value SHARED if there have been unordered reads of x. In that
case Sx.V is the join of all reads of x.

The initial analysis state is:

S0 = λt.{V : inct(⊥V), E : t@1}
∪ λm.{V : ⊥V }
∪ λx.{V : ⊥V , R : ⊥e,W : ⊥e}

3.3 Analysis Rules
Figure 1 presents the key details of how FASTTRACK2 handles
operations of the target program. The rules of the form S ⇒a

2 2017/2/25

S ⇒a S′, S ⇒a ERROR

[READ SAME EPOCH]
Sx.R = St.E

S ⇒rd(t,x) S

[READ SHARED SAME EPOCH]
Sx.R = SHARED

Sx.V (t) = St.E

S ⇒rd(t,x) S

[READ EXCLUSIVE]
Sx.R 6= SHARED
Sx.W � St.V
Sx.R � St.V

S ⇒rd(t,x) S[x.R := St.E]

[READ SHARED]
Sx.R = SHARED
Sx.W � St.V

v = Sx.V [t := St.E]

S ⇒rd(t,x) S[x.V := v]

[READ SHARE]
Sx.R = u@c
Sx.W � St.V

v = ⊥V [t := St.E, u := Sx.R]

S ⇒rd(t,x) S[x.R := SHARED, x.V := v]

[WRITE-READ RACE]
Sx.W 6� St.V

S ⇒rd(t,x) ERROR

[WRITE SAME EPOCH]
Sx.W = St.E

S ⇒wr(t,x) S

[WRITE EXCLUSIVE]
Sx.R 6= SHARED
Sx.R � St.V
Sx.W � St.V

S ⇒wr(t,x) S[x.W := St.E]

[WRITE SHARED]
Sx.R = SHARED
Sx.V v St.V
Sx.W � St.V

S ⇒wr(t,x) S[x.W := St.E]

[WRITE-WRITE RACE]
Sx.W 6� St.V

S ⇒wr(t,x) ERROR

[READ-WRITE RACE]
Sx.R 6= SHARED
Sx.R 6� St.V
S ⇒wr(t,x) ERROR

[SHARED-WRITE RACE]
Sx.R = SHARED
Sx.V 6v St.V
S ⇒wr(t,x) ERROR

[ACQUIRE]

S ⇒acq(t,m) S[t.V := (St.V t Sm.V)]

[JOIN]

S ⇒join(t,u) S[t.V := (u.V t St.V)]

[RELEASE]
S′ = S[m.V := St.V,

t.V := inct(St.V)]

S ⇒rel(t,m) S′

[FORK]
S′ = S[u.V := (u.V t St.V)]

t.V := inct(St.V)]

S ⇒fork(t,u) S′

Figure 1. FASTTRACK2 Algorithm.

ERROR indicate a race has been detected. The analysis stops once
this occurs.

Rule [READ SAME EPOCH] optimizes the case where x was
already read in this epoch. This rule requires only a single epoch
comparison. Rule [READ SHARED SAME EPOCH] similarly opti-
mizes the case where x is read-shared and has already been read in
this epoch.

The next three read rules all check for write-read conflicts via
the epoch-VC comparison Sx.W � St.V , and then update Rx ap-
propriately. Changes to the instrumentation state are expressed as
functional updates for clarity in the transition rules, but they are
implemented as constant-time in-place updates in our implementa-
tion.

If the current read happens after the previous read epoch (where
that previous read may be either by the same thread or by a
different thread, presumably with interleaved synchronization),

[READ EXCLUSIVE] updates Sx.R with the accessing threads cur-
rent epoch.

If Sx.R indicates that x is shared, the [READ SHARED] rule up-
dates the appropriate component of that vector. Note that multiple
reads of read-shared data from the same epoch are all covered by
this rule.

For the more general situation where the current read is con-
current with the previous read epoch, [READ SHARE] allocates a
vector clock to record the epochs of both reads, since either read
could subsequently participate in a read-write race.

The final rule [WRITE-READ RACE] matches the case where
the most recent write is concurrent with the current read.

Rule [WRITE SAME EPOCH] optimizes the case where x was
already written in this epoch. Rule [WRITE EXCLUSIVE] provides
a fast path when Sx.R is an epoch, and this rule checks that the
write happens after all previous accesses. In the case where Rx

3 2017/2/25

class VectorClock {

static final empty = new epoch[0];

// inv: if V != empty, V is unique
// inv: for all i, get(i) == i@c for some c .
volatile epoch[] V = empty;

void ensureCapacity(int n) {
if (n > this .V .length) {
epoch[] r = new epoch[n];
for (int i = 0; i < n; i++) r[i] = get(i);
this .V = r;

}
}

int size() { return this .V .length; }

void set(int i, epoch e) {
ensureCapacity(i+1);
this .V[i] = e;

}

void inc(int i) { set(i, Epoch .tick(get(i)); }

epoch get(int i) {
epoch a[] = this .V;
return (i < a .length) ? a[i] : i@0;

}

boolean leq(VectorClock other) {
int n = max(size(), other .size());
for (int i = 0; i < n; i++) {
if (!Epoch .leq(get(i), other .get(i))

return false;
}
return true;

}

void join(VectorClock other) {
for (int i = 0; i < other .size(); i++)
set(i, Epoch .max(get(i), other .get(i)));

}

void copy(VectorClock other) {
int n = max(size(), other .size());
for (int i = 0; i < n; i++)
set(i, other .get(i));

}
}

class ThreadState extends VectorClock {
final int tid;
epoch E; // inv: E == get(tid)

}

class VarState extends VectorClock {
volatile epoch R,W;

}

class LockState extends VectorClock { }

void read(ThreadState st, VarState sx) {
epoch e = st .E;
optional {
epoch r = sx .R;
if (r == e) return; [READ SAME EPOCH]
if (r == SHARED && sx .get(st .tid) == e)

return; [READ SHARED SAME EPOCH]
}
synchronized(sx) {

epoch w = sx .W;
assert Epoch .leq(w, st .get(TID(w)); [WRITE-READ RACE]
epoch r = sx .R;
if (r != SHARED) {
if (Epoch .leq(r, st .get(TID(r))) {
sx .R = e; [READ EXCLUSIVE]

} else {
sx .set(TID(r), r);
sx .set(st .tid, e);
sx .R = SHARED; [READ SHARE]

}
} else {
sx .set(st .tid, e); [READ SHARED]

}
}

}

void write(ThreadState st, VarState sx) {
epoch e = st .E;
optional {

epoch w = sx .W;
if (w == e) return; [WRITE SAME EPOCH]

}
synchronized(sx) {

epoch w = sx .W;
assert Epoch .leq(w, st .get(TID(w)); [WRITE-WRITE RACE]
epoch r = sx .R;
if (r != SHARED) {
assert Epoch .leq(r, st .get(TID(r));[READ-WRITE RACE]
sx .W = e; [WRITE EXCLUSIVE]

} else {
assert sx .leq(t); [SHARED-WRITE RACE]
sx .W = e; [WRITE SHARED]

}
}

}

void acquire(ThreadState st, LockState sm) {
st .join(sm); // m held

}
void release(ThreadState st, LockState sm) {

sm .copy(st); // m held
st .inc(st .tid);
st .E = st .get(st .tid);

}

void join(ThreadState st, ThreadState su) {
st .join(su); // t has joined on u

}
void fork(ThreadState st, ThreadState su) {

su .join(st); // t will start u
st .inc(st .tid);
st .E = st .get(st .tid);

}

Figure 2. FASTTRACK2 idealized implementation.

4 2017/2/25

indicates x is shared, [WRITE SHARED] requires a full (slow) VC
comparison. The remaining three rules handle write-write and read-
write races.

Other Operations. The remaining rules show how FASTTRACK2
handles all other operations (acquire, release, fork, and join). These
match the original FASTTRACK definition, except where noted
below.

Comparision to the Original FASTTRACK Rules.
• [READ SHARED SAME EPOCH]: Our original formulation of

this analysis omitted this case because we did not find it demon-
strably useful at the time [3]. However, we have now con-
cluded based on more extensive experiments that it occurrs of-
ten enough to improve performance in a number of important
scenarios.

• [WRITE SHARED]: In the original FASTTRACK2 specification,
the rule [WRITE SHARED] changes the read epoch vx.R to be
⊥e. That is, we revert from keeping a vector clock of last reads
to keeping a single epoch. Future write checks are constant-
time as a result. While this may improve performance in some
specific cases, we found that not to be the case. Moreover, while
we believe implementations using the original rule are correct,
eliminating the transition out of the read-shared state simplifies
the correctness argument we present below.

• [JOIN]: This rule no longer updates the vector clock for the
thread being joined to enable a simpler implementation.

• [. . . RACE]: We now make the four error cases explicit, rather
than implicitly defining as the cases not covered by any other
rule.

4. Correctness of the FASTTRACK2 Algorithm
FASTTRACK2 is precise and reports data races if and only if the
observed trace contains concurrent conflicting accesses, as charac-
terized by the following theorem.

Theorem 1 (Correctness). Suppose α is a feasible trace. Then α is
race-free if and only if ∃S such that S0 ⇒α S.

Proof. The two directions of this theorem follow from Theorems 2
and 3, respectively.

These theorems are stated below. Their proofs follow the same
structure as for the original FASTTRACK analysis, except where
noted below.

We introduce the following syntactic notation so that we can
index epochs in a variable state as if they were vector clocks. The
function for Sx.R consults Sx.V when x is in the SHARED state.

Sx.R(t) =

 t@c if Sx.R = t@c
t@0 if Sx.R = u@c and t 6= u
Sx.V (t) if Sx.R = SHARED

Sx.W (t) =

{
t@c if Sx.W = t@c
t@0 if Sx.W = u@c and t 6= u

Definition 1 (Active Threads). Thread t is active in α if α does not
contain join(, t).

Definition 2 (Well-Formed States). State S is well-formed for α
if for all t, u, m, and x such that t is active in α, and t 6= u, the
following hold:

St.E = St.V (t)
Su.V (t) < St.V (t)
Sm.V (t) < St.V (t)
Sx.R(t) ≤ St.V (t)
Sx.W (t) ≤ St.V (t)

The restriction to active threads t avoids the extra update in the
[JOIN] rule mentioned above.

Lemma 1. S0 is well-formed for ε.

Lemma 2 (Preservation of Well-Formedness). If S is well-formed
for α and S ⇒a S′ then S′ is well-formed for α.a.

For transition Sa ⇒a S′a, by convention we refer to compo-
nents of Sa as Sat , Sau, Sav , Sam, Sax , and compontents of S′a as Śat ,
Śau, Śav , Śam, Śax .

Lemma 3 (Clocks Imply Happens-Before). Suppose Sa is well-
formed for some history β and Sa ⇒a.α Sb ⇒b S′b. Let t =
Tid(a) and u = Tid(b). If Sat .V (t) ≤ Sbu.V (t) then a <a.α.b b.

Theorem 2 (Soundness). If S0 ⇒α S′ then α is race-free.

We introduce the abbreviation:

Ka =

{
Śat .V if a a join or acquire operation
Sat .V otherwise

Lemma 4. Suppose S is well-formed for some history β and
Sa ⇒α S′a and a, b ∈ α. Let t = Tid(a) and u = Tid(b). If
a <α b then Ka(t) v Kb(u).

Theorem 3 (Completeness). If α is race-free then S0 ⇒α S.

5. FASTTRACK2 Idealized Implementation
We now describe an idealized implementation of FASTTRACK2.
The code we present is close to the Java implementation available
with ROADRUNNER but hides some of the inherent complexities of
using that framework.

We begin with a definition of epochs. The actual code encodes
epochs as 32-bit or 64-bit integers (depending on configuration
flags), but here we use a simple abstraction with the necessary
operators defined as follows:

typedef epoch = t@c | SHARED;

TID(t@c) ≡ t
Epoch .tick(t@c) ≡ t@(c+1)

Epoch .leq(t@c, t@d) ≡ c ≤ d
Epoch .max(t@c, t@d) ≡ t@(max(c,d))

Cases not covered by the above rules are undefined.
At run time, ROADRUNNER maintains a mapping from each

thread, lock, and variable to a shadow object:

H : Tid → ThreadState
∪ Lock → LockState
∪ Var → VarState

These three classes all extend the VectorClock class and are
defined in Figure 2. They match the definitions of the analysis state,
with the addition of the tid field in ThreadState to facilitate
recovering a thread’s identifier from its shadow object.

ROADRUNNER calls an event handling function for each oper-
ation performed by the target:

Operation Event Handler Called When
rd(t, x) read(H(t), H(x)) before
wr(t, x) write(H(t), H(x)) before
acq(t,m) acquire(H(t), H(m)) after
rel(t,m) release(H(t), H(m)) before
fork(t, u) fork(H(t), H(u)) before
join(t, u) join(H(t), H(u)) after

Each handler runs in the Thread performing the operation. Thus
multiple event handlers may run concurrently. The handlers for
acquire and join run after the Java operations inducing those events.

5 2017/2/25

The rest run before the Java operation. These handlers are defined
in Figure 2. In each handler, there is exactly one path for each
analysis rule. Also, side-effect-free same-epoch tests are labelled as
optional blocks — they are taken in preference to the other cases
in the code, but they can also be elided without changing analysis
behavior.

6. Correctness of the FASTTRACK2 Idealized
Implementation

In this section, we demonstrate that the FASTTRACK2 event han-
dlers are serializable. A method is serializable if for every (arbitrar-
ily interleaved) program execution, there is an equivalent execution
with the same overall behavior where the method is executed se-
rially, with no interleaved actions of other threads. This property
helps us reason about the correspondence between the formal rules
and the code more easily.

6.1 Lipton’s Theory Reduction
We employ Lipton’s theory of reduction to reason about serializ-
ability [10, 6]. Using this theory, we will examine each path through
the event handlers, and demonstrate that the steps along that path
form an serializable sequence. To do this, we first label each indi-
vidual step with its commuting behavior, captures as one of four
possibilities:

Mover ∈ {R,L,B,N}
These indicate whether an evaluation step:

• right-commutes with operations of other threads (R);
• left-commutes with operations of other threads (L);
• both right- and left-commutes (B); or
• can be viewed as a single non-mover atomic action (N).

Consider an execution in which an acquire operation on some
lock is immediately followed by an action b of a second thread.
Since the lock is already held by the first thread, the action b neither
acquires nor releases the lock, and hence the acquire operation can
be moved to the right of bwithout changing the resulting state. Thus
a lock acquire operation is a right mover.

Similarly, consider an action a of one thread that is immediately
followed by a lock release operation by a second thread. During a,
the second thread holds the lock, and a can neither acquire nor
release the lock. Hence the lock release operation can be moved to
the left of a without changing the resulting state, and thus a lock
release operations is a left mover.

Finally, consider a read or write to a race-free shared variable.
No other thread accesses the field at the same time, and therefore
every access to the field is both a right mover and a left mover.

Lipton’s theory of reduction shows that any sequence of steps
matching the pattern

(B|R)∗[N](B|L)∗

is serializable and thus amenable to sequential reasoning. Various
prior static and dynamic analyses have utilized this theory to ensure
serializability of code blocks. (See, e.g., [6, 2] for a more complete
discussion of these techniques.)

6.2 Synchronization Discipline
We now discuss the synchronization discipline that describes when
event handlers may access various portions of the analysis date and
the corresponding mover properties of those accesses, which we
summarize in Figure 3.

This synchronization discipline is necessarily complex, as we
wish to optimize performance of the event handlers while simulta-

neously inserting sufficient synchronization for correctness. In par-
ticular, to permit the optional fast path code in each handler to ex-
ecute in a lock free manner, we use a combination of immutable
data, thread-local data, read-only data, lock-protected data, write-
protected data, and volatile data, as well as synchronization dis-
ciplines that change over time.

• The location st.E is thread local to thread st; accesses by st
are both-movers.

• The location st.tid is immutable, so all reads are both-
movers.

• The locations st.V and st.V[i] use a synchronization dis-
cipline that changes over time. Initially these are thread local
to the unique thread that will fork st; they are thread local to
st once that thread is forked; and after st terminates they can
be read only by threads that have joined on st. The fork-join
happens-before orderings thus prevent any race conditions on
these locations.

• The locations sm.V and sm.V[i] can only be accessed by
thread holding the lock sm. Such accesses are both-movers.

• The location sx.W is volatile and write-protected by lock sx;
that lock must be held for all writes. Hence reading sx.W with
sx held is a both-mover, as there are no concurrent writes;
otherwise accesses to sx.W are generally not movers.

• The location sx.R is write-protected by lock sx, and also im-
mutable once it becomes SHARED. Consequently, reads pro-
tected by sx are both-movers, and reads without the lock are in
general non-movers. Note that a read of SHARED is a right-
mover, however, since any subsequent operation of another
thread cannot modify sx.R. Conversely, a read of SHARED is
not a left-mover, since a preceding operation of a concurrent
thread could have written that value to sx.R, and clearly that
read and write do not commute.

• The location sx.V is volatile and initially protected by lock sx
for all accesses. Once sx.R becomes SHARED, this location
is write-protected by sx, meaning unprotected reads are now
allowed and are non-movers; protected reads are both-movers,
and protected writes are non-movers.

• The location sx.V is volatile and initially protected by lock sx
for all accesses. Once sx.R becomes SHARED, this location
is write-protected by sx, meaning unprotected reads are non-
movers; protected reads are both-movers, and protected writes
are non-movers.

• The location sx.V[i] is initially protected by lock sx for all
accesses. Once sx.R becomes SHARED, this location can only
be written by thread i while it holds the lock sx. It can be read
either by thread i or by any thread holding lock sx.

We also show in Figure 4 the moving behavior of each VectorClock
method called from the event handlers. For all cases except the last
two, the method calls are both-movers. That is, all accesses per-
formed by the code in the calling context specified will be both-
movers, and the composition of any number of individual both-
mover steps is a both-mover [6].

The last two calls in that figure have non-mover behavior be-
cause they each include all both-mover accesses except for a sin-
gle non-mover. For sx.get(i), the single non-mover access is the
read of sx.V. For sx.set(i,e), the single non-mover access is
the write to sx.V in the nested call to ensureCapacity.

6.3 Path Serializability
We now proceed to show that the event handlers from Figure 2
are serializable. To do this, we enumerate the control flow paths

6 2017/2/25

Location Mover When Property Name
st.E B Read/Write when current thread is st [1] STE

st.tid B Read [2] STTID

st.V or st.V[i] B Read/Write when current thread will fork st [3] STV-PRE
B Read/Write when current thread is st [4] STV-RUNNING
B Read when current thread has joined st [5] STV-POST

sm.V or sm.V[i] N Read/Write when sm is held [6] SMV

sx.W N Write when sx is held [7] SXW-WRITE-LOCKED
B Read when sx is held [8] SXW-READ-LOCKED
N Read when sx is not held [9] SXW-READ

sx.R N Write when sx.R 6= SHARED and sx is held [10] SXR-WRITE
N Read when sx.R 6= SHARED and sx is not held [11] SXR-READ
B Read when sx is held [12] SXR-READ-LOCKED
R Read when sx.R = SHARED and sx is not held [13] SXR-READ-SHARED

sx.V B Write when sx.R 6= SHARED and sx is held [14] SXV-WRITE
N Write when sx.R = SHARED and sx is held [15] SXV-WRITE-SHARED
B Read when sx is held [16] SXV-READ-LOCKED
N Read when sx is not held and sx.R = SHARED [17] SXV-READ-SHARED

sx.V[i] B Write when sx is held and sx.R 6= SHARED [18] ELEM-WRITE
B Write when sx is held and sx.R = SHARED and the current thread is i [19] ELEM-WRITE-SHARED
B Read when sx is held [20] ELEM-READ-LOCKED
B Read when sx.R = SHARED and the current thread is i [21] ELEM-READ-SHARED

Figure 3. Mover properties for analysis state memory locations.

Call Mover When Property Name
st.get(i) B When the current thread is st [22] GET-THREAD
sx.set(i,e) B When sx is held and sx.R 6= SHARED [23] SET
sx.leq(st) B When sx is held and the current thread is st [24] LEQ
st.join(sm) B When sm is held and the current thread is st [25] JOIN-LOCK
sm.copy(st) B When sm is held and the current thread is st [26] COPY
st.inc(i) B When the current thread is st [27] INC
st.join(su) B When the current thread is st and st has joined su [28] JOIN-CURRENT
su.join(st) B When the current thread is st and st will fork su [29] JOIN-OTHER
sx.get(i) N When sx.R = SHARED and the current thread is i [30] GET-SHARED
sx.set(i,e) N When sx is held and tsx.R = SHARED and the current thread is i [31] SET-SHARED

Figure 4. Mover properties for nested method calls locations.

through each event handler and demonstrate each path is serializ-
able. We present several representative paths in Figure 5.

Consider the first two paths in that figure, which correspond to
rules [READ SAME EPOCH] and [READ SHARED SAME EPOCH],
respectively. For each path, the first column shows the path rewrit-
ten so that each distinct step performs at most one memory or
synchronization operation. The second column shows the mover
property for each step, with the corresponding justification in
the third column. Steps accessing only local memory are both-
movers. An inspection of the sequence of mover properties for
these two code paths shows that each matches the reducible pattern
(B|R)∗[N](B|L)∗ and hence is serializable.

The final complexity in our serializability argument is demon-
strate by the third example path. It concerns the paths in which the
optional code blocks terminate normally, without returning from
the method. In this situation, the normally-terminating paths are se-
rializable, as demonstrated below using the same strategy as above.
Note that once an optional and side effect free code block ter-
minates normally, it gives the same observable behavior as if the
optional block were simply not executed. A block of code that is
not executed is a both mover since it performs no memory accesses
or synchronization. Consequently, our proof strategy considers nor-

mally terminating optional blocks to be both-movers [7, 15]. This
property is critical to the correctness arguments for several of the
event handler code paths, including the third path in Figure 5.

Lemma 5. The optional code block in read is a both-mover.

Proof. There are two normally-terminating paths through the op-
tional block. Each is serializable:

Path Mover Reason
epoch r = sx.R; N [12] SXR-READ-LOCKED
assume r != e; B
assume r != SHARED; B

epoch r = sx.R; R [12] SXR-READ-LOCKED
assume r != e; B
assume r == SHARED B
int tid == st.tid; B [2] STTID
epoch v =
sx.get(tid);

N [30] GET-SHARED

assume v == e; B

7 2017/2/25

[READ SAME EPOCH]:

Path Mover Reason Simplified
let e = st.E; B [1] STE
let r = sx.R; N [11] SXR-READ
assume r == e; B assume sx.R == st.E;

[READ SHARED SAME EPOCH]:

Path Mover Reason Simplified
let e = st.E; B [1] STE
let r = sx.R; R [13] SXR-READ-SHARED
assume r != e; B
assume r == SHARED B assume sx.R == SHARED;
let tid == st.tid; B [2] STTID
let v = sx.get(tid); N [30] GET-SHARED
assume v == e; B assume sx.get(st.tid) == st.E;

[READ SHARE]:

Path Mover Reason Simplified
let e = st.E; B [1] STE
optional { ... } B Lemma 5, below
lock(sx); R Section 6.1 lock(sx);
let w = sx.W; B [8] SXW-READ-LOCKED
let vw = st.get(TID(w)); B [22] GET-THREAD
assume Epoch.leq(w, vw); B assume Epoch.leq(sx.W, st.get(TID(sx.W)));
let r = sx.R; B [12] SXR-READ-LOCKED
assume r != SHARED; B assume sx.R != SHARED;
let vr = st.get(TID(r)); B [22] GET-THREAD
assume !Epoch.leq(r, vr); B assume !Epoch.leq(sx.R, st.get(TID(sx.R)));
sx.set(TID(r), r) B [23] SET sx.set(TID(sx.R), sx.R)
let tid = st.tid; B [2] STTID
sx.set(tid, e); B [23] SET sx.set(st.tid, e);
sx.R = SHARED N [10] SXR-WRITE
unlock(sx); L Section 6.1 unlock(sx);

Figure 5. Representative event handler traces.

In addition, the each path is side-effect free. Thus, we may consider
the block a both-mover [7, 15].

Lemma 6. The optional code block in write is a both-mover.

Proof. There is only one normally-terminating path through the
optional block. It is serializable:

Path Mover Reason
epoch w = sx.W; N [9] SXW-READ
assume w != e; B

Thus, the pure block is a both-mover, as in the previous lemma.

All other paths through the event handlers are treated similarly.
We show the complete set of paths together with the corresponding
reduction arguments in the Appendix.

7. Correspondence To Analysis Rules
Once we have shown the event handlers are serializable, we use se-
quential reasoning to simplify each code path into the steps shown
in the fourth column of Figure 5. By inspection, each simplified

code path has a fairly direct correspondence to the antecedents and
state updates of the corresponding analysis rule from Figure 1. This
correspondence can be formalized by developing a bisimulation be-
tween the state transition system described by Figure 1 and a transi-
tion system capturing the behavior of the serialized event handlers.
This approach has been explored for a more basic race detection
algorithm [11] and is readily adapted to this context.

8. FASTTRACK2 Implementation for Java
We have implemented FASTTRACK2 the ROADRUNNER analysis
framework [4]. ROADRUNNER takes as input a compiled Java tar-
get program and inserts instrumentation code into the target to gen-
erate the event stream of memory and synchronization operations.
This section outlines a number of FASTTRACK2 implementation
details not present in our idealized implementation.

Additional Synchronization Primitives. FASTTRACK2 supports
other forms of synchronization, including volatiles variables, wait-
/notify, and barriers, as in the original [3]. FASTTRACK2 also en-
sures the appropriate static initializers happen before any use of a
static variable or class.

8 2017/2/25

2.7GHz 12-core (hyper-threaded) Intel Xeon 2.4GHz 16-core AMD Opteron

Program Base Time
(sec)

Overhead Base Time
(sec)

Overhead

FT FT2 FT2L FT FT2 FT2L

crypt 0.22 74.09 71.51 81.21 0.41 93.68 79.69 80.72
lufact 0.55 61.69 63.31 64.59 0.68 68.95 68.92 74.89
moldyn 1.80 33.48 34.02 35.58 5.31 25.97 26.04 26.73
montecarlo 0.97 10.11 9.55 9.30 2.16 10.88 8.27 8.10
raytracer 0.91 22.87 21.95 25.10 2.03 19.16 19.20 19.42
series 58.15 0.05 0.05 0.05 111.32 0.01 0.01 0.01
sor 0.27 23.11 24.35 23.80 0.74 15.33 14.98 14.01
sparsematmult 0.68 34.69 34.52 36.35 1.28 27.88 29.23 28.07
avrora 3.73 2.00 1.93 1.95 7.69 1.38 1.40 1.39
batik 1.02 2.88 2.91 2.90 1.35 3.98 3.81 3.95
fop 0.30 7.93 7.74 7.77 0.43 7.75 7.97 8.14
h2 4.25 8.62 8.47 9.09 10.70 7.23 7.36 7.34
jython 1.62 17.77 16.59 17.39 2.72 16.89 16.24 16.60
luindex 0.43 13.10 13.36 13.30 0.58 16.19 15.56 16.58
lusearch 0.32 17.49 17.08 17.00 0.64 19.60 19.53 19.20
pmd 0.69 3.32 3.12 3.20 1.12 2.56 2.50 2.53
sunflow 0.69 29.80 28.97 28.48 1.39 34.14 26.70 27.11
tomcat 0.45 2.20 1.48 1.50 0.85 1.94 1.72 1.62
xalan 0.39 6.17 5.90 6.33 1.14 4.20 3.49 3.73

Geomean 9.40 9.07 9.33 8.21 7.79 7.78

Table 1. Checker Overhead for FASTTRACK (FT), FASTTRACK2 (FT2), and FASTTRACK2L (FT2L).

State Representation and Fast Paths. ROADRUNNER’s pro-
gramming model is optimized for performance in various ways
and necessitates maintaining H for threads, locks, and variables
via different mechanisms than the simplified model presented here.
ROADRUNNER also enables tools to provide fast path code that
is typically inlined into the target at each memory access. FAST-
TRACK2’s fast paths are essentially the same as the read and write
event handlers, except that they fail over to the slow path on a de-
tected race rather than raising an error. This is to enable better error
reporting, and also because static initializer order constraints are
not considered on the fast path for performance reasons.

VectorClock Methods. The vector clock methods in our ideal-
ized implementation are designed for simplicity. In the actual im-
plementation, we unroll loops, inline nested method calls, and per-
form various other local optimizations to improve performance.

Optimized Epoch.leq Tests. Our implementation also optimizes
accesses to vector clocks by short-circuiting tests guaranteed to
succeed via program order. For example, in the write handler we
rewrite the test Epoch.leq(w, st.get(TID(w)) as

st .E == TID(w) || Epoch .leq(w, st .get(TID(w))

If the thread for last write epoch w is the current thread, the previous
write happens before the current operation via program order, and
we can thus avoid accessing the vector clock.

Errors. As with our previous implementations, FASTTRACK2 is
guaranteed to precisely report the first data race encountered. It
continues to process events after that point and attempts to produce
meaningful errors messages for subsequent data races on a best-
effort basis.

9. FASTTRACK2 Performance
We report FASTTRACK2’s performance on the JavaGrande [8]
and DaCapo [1] benchmark suites. We configured the JavaGrande
programs to use their largest data sizes and 16 worker threads, and

we configured the DaCapo benchmarks to use their default sizes.
Tradebeans and eclipse are incompatible with our ROADRUNNER
framework and are omitted.

The DaCapo test harness uses a number of class loading features
not supported in ROADRUNNER. Thus, we extracted the bench-
marks from the DaCapo harness and ran them (and also the Jav-
aGrande programs) in a simplified harness integrated into ROAD-
RUNNER. That harness follows the same model of running the tar-
get’s workload several times in a warm up phase and then mea-
suring the running time for repeated iterations of the workload.
We used 20 iterations for measurement. This methodology departs
from our earlier validation experiments (e.g. [3]) in which we mea-
sured the time to perform only a single iteration of the workload
at a time. We opted for a methodology similar to that of DaCapo’s
to better isolate the “steady-state” performance of the race detec-
tion algorithms from the overhead of JVM startup, class loading,
bytecode instrumentation, etc.

Table 1 shows the results for two experimental platforms: 1) a
2.7GHz 12-core (hyper-threaded) Intel Xeon processor with 64GB
of memory running OSX and Java 1.7; and 2) a 2.4GHz 16 core
AMD Opteron processor with 64GB of memory running Ubuntu
Linux and Java 1.7. That table presents the base running time for
each program, as well as the overhead of using FASTTRACK, FAST-
TRACK2, FASTTRACK2L (a variant that encodes epochs as longs
rather than ints to accommodate larger clock values). Overhead is
the additional time required to check a program:

CheckerTime− BaseTime

BaseTime

On both platforms, FASTTRACK2’s overhead is about 4-5% lower
than FASTTRACK overall, and FASTTRACK2L’s overhead is also
slightly lower by about 1% and 5% lower than FASTTRACK on the
two platforms, respectively. These benchmarks and test harness are
available as part of the ROADRUNNER 0.5 release.

9 2017/2/25

References
[1] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. B. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA, pages 169–190, 2006.

[2] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. In POPL, pages 256–267, 2004.

[3] C. Flanagan and S. N. Freund. FastTrack: Efficient and precise
dynamic race detection. In PLDI, pages 121–133, 2009.

[4] C. Flanagan and S. N. Freund. The RoadRunner dynamic analysis
framework for concurrent programs. In PASTE, pages 1–8, 2010.

[5] C. Flanagan and S. N. Freund. RedCard: Redundant check elimination
for dynamic race detectors. In ECOOP, pages 255–280, 2013.

[6] C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for
atomicity: Static checking and inference for Java. ACM Trans.
Program. Lang. Syst., 30(4), 2008.

[7] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for
atomicity. IEEE Trans. Software Eng., 31(4):275–291, 2005.

[8] Java Grande Forum. Java Grande benchmark suite. Available at
http://www.javagrande.org/, 2008.

[9] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[10] R. J. Lipton. Reduction: A method of proving properties of parallel
programs. Communications of the ACM, 18(12):717–721, 1975.

[11] W. Mansky, Y. Peng, S. Zdancewic, and J. Devietti. Verifying
dynamic race detection. In Conference on Certified Programs and
Proofs, pages 151–163, 2017.

[12] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In
POPL, pages 378–391, 2005.

[13] F. Mattern. Virtual time and global states of distributed systems. In
Workshop on Parallel and Distributed Algorithms, 1988.

[14] E. Pozniansky and A. Schuster. MultiRace: Efficient on-the-fly data
race detection in multithreaded C++ programs. Concurrency and
Computation: Practice and Experience, 19(3):327–340, 2007.

[15] L. Wang and S. D. Stoller. Static analysis of atomicity for programs
with non-blocking synchronization. In PPOPP, pages 61–71, 2005.

[16] J. R. Wilcox, P. Finch, C. Flanagan, and S. N. Freund. Array shadow
state compression for precise dynamic race detection. In ASE, pages
155–165, 2015.

10 2017/2/25

A. Serializability of All Paths
A.1 Reads

[READ SAME EPOCH]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
epoch r = sx.R; N [11] SXR-READ
assume r == e; B assume sx.R == st.E;

[READ SHARED SAME EPOCH]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
epoch r = sx.R; R [13] SXR-READ-SHARED
assume r != e; B
assume r == SHARED B assume sx.R == SHARED;
int tid == st.tid; B [2] STTID
epoch v = sx.get(tid); N [30] GET-SHARED
assume v == e; B assume sx.get(st.tid) == st.E;

[WRITE-READ RACE]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
optional { ... } B Lemma 5, below
lock(sx); R Section 6.1 lock(sx);
epoch w = sx.W; B [8] SXW-READ-LOCKED
epoch vw =
st.get(TID(w));

B [22] GET-THREAD

assume !Epoch.leq(w, vw); B assume !Epoch.leq(sx.W, st.get(TID(sx.W)));
error; N error;

[READ SHARED]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
optional { ... } B Lemma 5, below
lock(sx); R Section 6.1 lock(sx);
epoch w = sx.W; B [8] SXW-READ-LOCKED
epoch vw =
st.get(TID(w));

B [22] GET-THREAD

assume Epoch.leq(w, vw); B assume Epoch.leq(sx.W, st.get(TID(w)));
epoch r = sx.R; B [12] SXR-READ-LOCKED
assume r == SHARED; B assume sx.R == SHARED;
int tid = st.tid; B [2] STTID
sx.set(tid, e); N [31] SET-SHARED sx.set(st.tid, st.E);
unlock(sx); L Section 6.1 unlock(sx);

11 2017/2/25

[READ EXCLUSIVE]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
optional { ... } B Lemma 5, below
lock(sx); R Section 6.1 lock(sx);
epoch w = sx.W; B [8] SXW-READ-LOCKED
epoch vw =
st.get(TID(w));

B [22] GET-THREAD

assume Epoch.leq(w, vw); B assume Epoch.leq(sx.W, st.get(TID(sx.W)));
epoch r = sx.R; B [12] SXR-READ-LOCKED
assume r != SHARED; B assume sx.R != SHARED;
epoch vr =
st.get(TID(r));

B [22] GET-THREAD

assume Epoch.leq(r, vr); B assume Epoch.leq(sx.R, st.get(TID(sx.R)));
sx.R = e; N [10] SXR-WRITE sx.R = e;
unlock(sx); L Section 6.1 unlock(sx);

[READ SHARE]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
optional { ... } B Lemma 5, below
lock(sx); R Section 6.1 lock(sx);
epoch w = sx.W; B [8] SXW-READ-LOCKED
epoch vw =
st.get(TID(w));

B [22] GET-THREAD

assume Epoch.leq(w, vw); B assume Epoch.leq(sx.W, st.get(TID(sx.W)));
epoch r = sx.R; B [11] SXR-READ
assume r != SHARED; B assume sx.R != SHARED;
epoch vr =
st.get(TID(r));

B [22] GET-THREAD

assume !Epoch.leq(r, vr); B assume !Epoch.leq(sx.R, st.get(TID(sx.R)));
sx.set(TID(r), r) B [23] SET sx.set(TID(sx.R), sx.R)
int tid = st.tid; B [2] STTID
sx.set(tid, e); B [23] SET sx.set(st.tid, e);
sx.R = SHARED N [10] SXR-WRITE
unlock(sx); L Section 6.1 unlock(sx);

A.2 Writes

[WRITE SAME EPOCH]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
epoch w = sx.W; N [9] SXW-READ
assume w == e; B assume sx.W == st.E;

[WRITE-WRITE RACE]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
optional { ... } B Lemma 6, below
lock(sx); R Section 6.1 lock(sx);
epoch w = sx.W; B [8] SXW-READ-LOCKED
epoch vw =
st.get(TID(w));

B [22] GET-THREAD

assume !Epoch.leq(w, vw); B assume !Epoch.leq(sx.W, st.get(TID(sx.W)));
error; N error;

12 2017/2/25

[READ-WRITE RACE]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
optional { ... } B Lemma 6, below
lock(sx); R Section 6.1 lock(sx);
epoch w = sx.W; B [8] SXW-READ-LOCKED
epoch vw =
st.get(TID(w));

B [22] GET-THREAD

assume Epoch.leq(w, vw); B assume Epoch.leq(sx.W, st.get(TID(w)));
epoch r = sx.R; B [12] SXR-READ-LOCKED
assume r != SHARED; B assume sx.R != SHARED;
epoch vr =
st.get(TID(r));

B [22] GET-THREAD

assume !Epoch.leq(r, vr); B assume !Epoch.leq(sx.R, st.get(TID(sx.R)));
error; N error;

[WRITE EXCLUSIVE]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
optional { ... } B Lemma 6, below
lock(sx); R Section 6.1 lock(sx);
epoch w = sx.W; B [8] SXW-READ-LOCKED
epoch vw =
st.get(TID(w));

B [22] GET-THREAD

assume Epoch.leq(w, vw); B assume Epoch.leq(sx.W, st.get(TID(w)));
epoch r = sx.R; B [12] SXR-READ-LOCKED
assume r != SHARED; B assume sx.R != SHARED;
epoch vr =
st.get(TID(r));

B [22] GET-THREAD

assume Epoch.leq(r, vr); B assume Epoch.leq(sx.R, st.get(TID(sx.R)));
sx.W = e; N [7] SXW-WRITE-LOCKED s.W = e;
unlock(sx); L Section 6.1 unlock(sx);

[SHARED-WRITE RACE]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
optional { ... } B Lemma 6, below
lock(sx); R Section 6.1 lock(sx);
epoch w = sx.W; B [8] SXW-READ-LOCKED
epoch vw =
st.get(TID(w));

B [22] GET-THREAD

assume Epoch.leq(w, vw); B assume Epoch.leq(sx.W, st.get(TID(w)));
epoch r = sx.R; B [12] SXR-READ-LOCKED
assume r == SHARED; B assume sx.R != SHARED;
assume !sx.leq(st); B [24] LEQ assume !sx.leq(t);
error N error;

13 2017/2/25

[WRITE SHARED]:

Path Mover Reason Simplified
epoch e = st.E; B [1] STE
optional { ... } B Lemma 6, below
lock(sx); R Section 6.1 lock(sx);
epoch w = sx.W; B [8] SXW-READ-LOCKED
epoch vw =
st.get(TID(w));

B [22] GET-THREAD

assume Epoch.leq(w, vw); B assume Epoch.leq(sx.W, st.get(TID(w)));
epoch r = sx.R; B [12] SXR-READ-LOCKED
assume r == SHARED; B assume sx.R == SHARED;
assume sx.leq(st); B [24] LEQ assume sx.leq(t);
sx.W = e; N [7] SXW-WRITE-LOCKED s.W = e;
unlock(sx); L Section 6.1 unlock(sx);

A.3 Other

[ACQUIRE]:

Path Mover Reason Simplified
st.join(sm); B [25] JOIN-LOCK st.join(sm);

[RELEASE]:

Path Mover Reason Simplified
sm.copy(st); B [26] COPY sm.copy(st);
int tid = st.tid; B [2] STTID
st.inc(tid); B [27] INC st.inc(st.tid);
val e = st.get(tid); B [22] GET-THREAD
st.E = e; B [1] STE st.E = st.get(st.tid);

[JOIN]:

Path Mover Reason Simplified
st.join(su); B [28] JOIN-CURRENT st.join(su);

[FORK]:

Path Mover Reason Simplified
su.join(st); B [29] JOIN-OTHER su.join(st);
int tid = st.tid; B [2] STTID
st.inc(tid); B [27] INC st.inc(st.tid);
val e = st.get(tid); B [22] GET-THREAD
st.E = e; B [1] STE st.E = st.get(st.tid);

14 2017/2/25

