
156

The Anchor Verifier for Blocking and Non-blocking
Concurrent Software: Supplementary Appendix

CORMAC FLANAGAN, University of California, Santa Cruz, USA
STEPHEN N. FREUND, Williams College, USA

Verifying the correctness of concurrent software with subtle synchronization is notoriously challenging. We
present the Anchor verifier, which is based on a new formalism for specifying synchronization disciplines
that describes both (1) what memory accesses are permitted, and (2) how each permitted access commutes
with concurrent operations of other threads (to facilitate reduction proofs). Anchor supports the verification
of both lock-based blocking and cas-based non-blocking algorithms. Experiments on a variety concurrent
data structures and algorithms show that Anchor significantly reduces the burden of concurrent verification.

CCS Concepts: • Theory of computation→ Program verification; Program specifications; • Software

and its engineering→ Concurrent programming languages; Formal software verification;

Additional Key Words and Phrases: concurrent program verification, reduction, synchronization

ACM Reference Format:

Cormac Flanagan and Stephen N. Freund. 2020. The Anchor Verifier for Blocking and Non-blocking Concurrent
Software: Supplementary Appendix. Proc. ACM Program. Lang. 4, OOPSLA, Article 156 (November 2020),
34 pages. https://doi.org/10.1145/3428224

A SUPPLEMENTARY APPENDIX

A.1 Generic Reduction Theorem

We start by presenting a generic reduction theorem that extends Theorem 1 of [Flanagan and Qadeer
2003]. The key extension is that we now consider two operations to commute even if swapping
them could introduce new errors (but never hide old errors), as any errors from a preemptive
execution will still also be present in the corresponding cooperative execution obtained via repeated
swapping.
Given a set of states State , with error states E ⊆ State , and transition relations →i ,→j⊆

State × State , we say that →i commutes with →j with respect to E if whenever s1 →i s2 →j s3
then either:
(1) ∃e ∈ E. s1 →j e , or
(2) ∃s4 ∈ State, e ∈ E. s1 →j s4 →i e , or
(3) ∃s4 ∈ State . s1 →j s4 →i s3.
Thus, swapping→i and→j transitions either does not affect the final state s3 or introduces a

new error state e .

Authors’ addresses: Cormac Flanagan, University of California, Santa Cruz, Santa Cruz, CA, USA; Stephen N. Freund,
Williams College, Williamstown, MA, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/11-ART156
https://doi.org/10.1145/3428224

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 156. Publication date: November 2020.

https://doi.org/10.1145/3428224
https://doi.org/10.1145/3428224

The Anchor Verifier for Blocking and Non-blocking Concurrent Software: Supplementary Appendix 156:31

For S ⊆ State , we define
S/→i = (→i) ∩ (S × State)

→i \S = (→i) ∩ (State × S)

Theorem 6 (Generic Reduction). For all i , let Ri , Li , and Ei be sets of states and⇀i be a transition
relation. Suppose, for all i ,
(1) Ri , Li , and Ei are pairwise disjoint.
(2) (Li/⇀i \Ri) is false.

and for all j , i ,
(3) ⇀i and⇀j are disjoint.
(4) (⇀i \Ri) commutes with⇀j with respect to E.
(5) ⇀j commutes with (Li/⇀i) with respect to E.
(6) if p ⇀i q, then R j (p) ⇔ R j (q), Lj (p) ⇔ Lj (q), Ej (p) ⇔ Ej (q).
(7) ∀q ∈ Li . q ⇀

∗
i q

′ ∈ Ni , i.e., q is non-blocking.
(8) Ei/⇀i= ∅.

Let
Ni = ¬(Ri ∨ Li)

N = ∀i . Ni

E = ∃i . Ei

⇀ = ∃i . ⇀i

⇀⇀ = ∃i . (∀j , i . Nj)/⇀i

Suppose p ∈ N with p ⇀̸⇀∗ E. Then
(1) p ⇀̸∗ E, and
(2) For all q ∈ N , if p ⇀∗ q then p ⇀⇀∗ q.

Proof. The proof of this theorem follows the structure of the proof of Theorem 1 in [Flanagan
and Qadeer 2003], extended to permit the reduced trace to go wrong more often than the original.

We begin by defining several terms.
A pre-commit sequence by thread i is a sequence of states starting in Ni where each transition is

a right-mover. We summarize the beginning and ending states of a pre-commit sequence as
Prei = Ni/((⇀i \Ri)

∗)

A post-commit sequence by thread i is a pre-commit sequence followed by a committing transition
⇀i , followed by left-movers (Li/⇀i).

Post i = Prei ; (⇀i \Li); (Li/⇀i)
∗

where ·; · denotes the composition of relations, i.e.:
Prei ;⇀i = { (s, s ′′) | ∃s ′.(s, s ′) ∈ Prei ∧ (s ′, s ′′) ∈⇀i }

A finished sequence by thread i is a post-commit sequence that ends in Ni :
Finishi = Post i \ Ni

We note that Prei ,Post i ,Finishi ⊆ State × State . Let
Pre = ∃i . Prei

Post = ∃i . Post i

Finish = ∃i . Finishi

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 156. Publication date: November 2020.

156:32 Cormac Flanagan and Stephen N. Freund

We first prove that

If (p,q) ∈ Post∗;Pre∗ then q < E (1)

Let L(q) = { i | q ∈ Li }. Proof is by induction on |L(q)|.
• Base Case: Suppose L(q) = ∅, and assume q ∈ Ei for some i . Then (p,q) ∈ Finish∗;Prei .
Furthermore, since a Prei step cannot end in Ei , ∃q′. (p,q′) ∈ Finish∗ ∧ q′ ∈ Ei . Hence,
p ⇀⇀∗ q′, contradicting the assumption that p ⇀̸⇀∗ q′.

• Inductive Case: Assume (p,q) ∈ Post∗;Pre∗ and j ∈ L(q), i.e. q ∈ Lj . By the non-blocking
assumption, q ⇀∗

j q
′ ∈ Nj . Thus, we can left-commute these q ⇀∗

j q
′ steps to the end of the

last Post j block to yield one of the following cases:
– (p,q′) ∈ Post∗;Pre∗ and L(q′) ⊂ L(q) \ {j} if no commuting steps yield an error. By
induction, q′ < E, and thus q < E.

– If a commuting step yields an error state q′′ ∈ E, then L(q′′) ⊂ L(q), but by induction this
is impossible.

We next prove that

If p ⇀∗ q then (p,q) ∈ Post∗;Pre∗ (2)

The proof is by induction on the length of sequence p ⇀∗ q.
• Base Case: If p = q, this is trivial.
• Inductive Case: Assume p ⇀∗ q ⇀i q

′ and (p,q) ∈ Post∗;Pre∗. There are several cases to
consider:
– (q,q′) ∈ Ni × (Ni ∨ Li). Then all Pre blocks right-commute over this⇀i step, and we can
add this⇀i step as additional Post block, yielding (p,q′) ∈ Post∗;Pre∗.

– (q,q′) ∈ Ni × Ri . Then we can add this step as a new Pre block.
– q ∈ Li . Then the last i block must be a Post i block, and q ⇀i q

′ left commutes to the end
of this Post i block.

– q ∈ Ri . Then the last i block must be a Prei block, and the subsequent f sPre blocks
right-commute over q ⇀i q

′. Thus we can add this step at the end of the Prei block.
We now prove the two parts of this theorem. To show part 1, assume p ⇀∗ q. By (2), (p,q) ∈

Post∗;Pre∗. By (1), q < E.
To show part 2, assume q ∈ N and p ⇀∗ q. Then (p,q) ∈ Post∗;Pre∗ by (2). But since q ∈ N ,

(p,q) ∈ Post∗. Hence, each Post i block must end in Ni , so (p,q) ∈ Finish∗, and p ⇀⇀∗ q.
□

A.2 Proofs for Section 6

We now leverage the generic reduction theorem to prove our central reduction argument for
Anchor.

First, we prove that⇒-steps right-commute (or go wrong) in the Pre phase and left-commute
(or go wrong) in the Post phase. Proving this property requires a notion like strict stability from
Definition 5.2. That notion of stability is satisfied by many synchronization specifications. However,
strict stability is sometimes overly restrictive. For example, it prohibits interleaved writes from
increasing the access permissions of a thread. For maximal expressiveness, we instead derive a
more relaxed notion of stability from the conditions necessary to prove the following commuting
lemma for all pairs of possible execution steps.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 156. Publication date: November 2020.

The Anchor Verifier for Blocking and Non-blocking Concurrent Software: Supplementary Appendix 156:33

Definition A.1 (Stability). Specification R,W is stable if for all l , k t , H , v ,w , and u where u , t :
A.1 Wl (t , H , v) ⊑ R ∧ Wk (u , H [l := v],w) ⊑ E ⇒ Wk (u , H ,w) ∈ {Wk (u , H [l := v],w), E }

A.2 Wl (t , H , v) , E ∧ Wk (u , H [l := v],w) @ L ⇒ Wk (u , H ,w) @ L
A.3 k , l ∧Wl (t , H , v) , E ∧ Wk (u , H [l := v],w) ⊑ L ⇒ Wk (u , H ,w) ∈ {Wk (u , H [l := v],w), E }

C Wl (t , H , v) ⊑ E ∧ Wk (u , H ,w) ⊑ L ⇒ Wl (t , H [k := w], v) ∈ {Wl (t , H , v), E }

D Wl (t , H , v) ⊑ R ∧ Wk (u , H [l := v],w) ⊑ N ⇒ Wl (t , H [k := w], v) ∈ {Wl (t , H , v), E }

E Wl (t , H , v) ⊑ N ∧ Wk (u , H [l := v],w) ⊑ L ⇒ Wl (t , H [k := w], v) ∈ {Wl (t , H , v), E }

F Rl (t , H) ⊑ R ∧ Wk (u , H ,w) ⊑ N ⇒ Rl (t , H [k := w]) ∈ { Rl (t , H), E }

H Rl (t , H , v) ⊑ E ∧ Wk (u , H ,w) ⊑ L ⇒ Rl (t , H [k := w]) ∈ { Rl (t , H), E }

I k , l ∧ Rl (t , H) ⊑ N ∧ Wk (u , H ,w) ⊑ N ⇒ Rl (t , H [k := w]) ∈ { Rl (t , H), E }

J Wl (t , H , v) ⊑ R ∧ Rk (u , H) ⊑ E ⇒ Rk (u , H) ∈ { Rk (u , H [l := v]), E }

K Wl (t , H , v) ⊑ N ∧ Rk (u , H [l := v]) ⊑ L ⇒ Rk (u , H) ∈ { Rk (u , H [l := v]), E }

L Wl (t , H , v) ⊑ N ∧ Rk (u , H [l := v]) @ L ⇒ Rk (u , H) @ L
M Wl (t , H , v) ⊑ N ∧ Wk (u , H ,w1) ⊑ E ⇒ Wk (u , H [k := w1],w2) ∈{Wk (u , H [l := v][k := w1],w2), E}
N Wl (t , H , v1) ⊑ E ∧ Wk (u , H ,w) ⊑ L ⇒ Wl (t , H [k := w][l := v1], v2) ∈ {Wl (t , H [l := v1], v2), E }

Shaded terms are trivially true but included for symmetry among the rules. Rules M and N are
only applicable if l or k is manipulated via a cas operation.

Lemma 1 (Commuting). Suppose R,W is a valid and stable synchronization discipline, u , t , and
Π1 ⇒t Π2 ⇒u Π3

where Π2 = T2 · H2 ·C2 · P2, and P2(t) = Pre or P2(u) = Post. Then:
(1) ∃Π4. Π1 ⇒u Π4 ⇒t Π3, or
(2) ∃Π4,Π5. Π1 ⇒u Π4 ⇒t Π5 and t is wrong in Π5, or
(3) ∃Π4. Π1 ⇒u Π4 and u is wrong in Π4.

Proof. By case analysis on all pairs of possibly conflicting operations. □

Next, we define the predicates Ri ,Li ,Ei ,Ni ,N ⊆ Π over an instrumented state Π = T · H ·C ÛP :

Ri (Π) = P(i) = Pre ∧ ¬Ni (Π)

Li (Π) = P(i) = Post ∧ ¬Ni (Π)

Ei (Π) = thread i is wrong in Π

Ni (Π) = thread i is yielding in Π

N(Π) = ∀i . Ni (Π)

These predicates characterize whether thread i is in the pre-commit, or right-mover, part of a
reducible code sequence (Ri); in the post-commit, or left-mover, part (Li); gone wrong (Ei); or is
yielding (Ni).
We can now formalize the nonblocking requirement that any transaction that has passed its

commit point must be able to terminate, i.e. if Π0 ⇒∗ Π′ and Li (Π′) then Π′ ⇒∗
i Π′′ such that

Ni (Π
′′).

Restatement of Theorem 3 (Reduction). If Π = T0 ·H0 ·C0 · P0 and Π0 does not go wrong under
Z⇒, then:
(1) Π0 does not go wrong under⇒.
(2) If Π0 ⇒∗ Π where Π is yielding, then Π0 Z⇒∗ Π.

Proof. By Theorem 6, where the preconditions of that theorem are satisfied as follows. For all
i, j ∈ Tid where i , j:

(1) Ri , Li , and Ei are pairwise disjoint by construction.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 156. Publication date: November 2020.

156:34 Cormac Flanagan and Stephen N. Freund

(2) Li /⇒i \Ri is false. Li says that P(i) = Post and thread i is not yielding. Ri says that
P(i) = Pre. However, the only transition of thread i from Post to Pre is for yield.

(3) ⇒i and⇒j are disjoint.
(4) ⇒i / Ri commutes with ⇒j with respect to Ei . By Lemma 1.
(5) ⇒j commutes with Li \ ⇒i with respect to Ei . By Lemma 1.
(6) ⇒i does not change the phase or statements of other threads.
(7) By the non-blocking assumption.
(8) By definition of ⇒i .

□

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 156. Publication date: November 2020.

	Abstract
	1 Introduction
	2 Background and Examples
	3 Related Work
	4 The AnchorJava Concurrent Language: Syntax and Semantics
	5 Synchronization Specifications
	6 Checking Reduction
	6.1 Instrumented Semantics
	6.2 Correspondence to the Standard Semantics
	6.3 Reducibility of the Instrumented Semantics

	7 Thread-Modular Semantics
	8 Anchor Verifier
	9 Evaluation
	9.1 P/C Equivalence for Concurrent Collections
	9.2 Comparison to CIVL: The FastTrack Race Detector
	9.3 Comparison to Armada: Single Enqueuer/Dequeuer Lock-Free Queue

	10 Conclusion
	Acknowledgments
	References
	Abstract
	A Supplementary Appendix
	A.1 Generic Reduction Theorem
	A.2 Proofs for Section 6

