
Sage: Hybrid Checking for Flexible Specifications

Jessica Gronski† Kenneth Knowles† Aaron Tomb† Stephen N. Freund‡ Cormac Flanagan†
†University of California, Santa Cruz ‡ Williams College

Abstract
Software systems typically contain large APIs that are in-
formally specified and hence easily misused. This paper
presents the Sage programming language, which is designed
to enforce precise interface specifications in a flexible man-
ner. The Sage type system uses a synthesis of the type
Dynamic, first-class types, and arbitrary refinement types.
Since type checking for this expressive language is not stat-
ically decidable, Sage uses hybrid type checking, which ex-
tends static type checking with dynamic contract checking,
automatic theorem proving, and a database of refuted sub-
type judgments.

1. Introduction
Constructing a large, reliable software system is extremely
challenging, due to the difficulty of understanding the sys-
tem in its entirety. A necessary strategy for controlling this
conceptual complexity is to divide the system into modules
that communicate via clearly specified interfaces.

The precision of these interface specifications may natu-
rally and appropriately evolve during the course of software
development. To illustrate this potential variation, consider
the following specifications for the argument to a function
invertMatrix:

1. The argument can be any (dynamically-typed) value.

2. The argument must be an array of arrays of numbers.

3. The argument must be a matrix, that is, a rectangular
(non-ragged) array of arrays of numbers.

4. The argument must be a square matrix.

5. The argument must be a square matrix that satisfies the
predicate isInvertible.

All of these specifications are valid constraints on the ar-
gument to invertMatrix, although some are obviously more
precise than others. Different specifications may be appro-
priate at different stages of the development process. Simpler
specifications facilitate rapid prototyping, whereas more pre-
cise specifications provide more correctness guarantees and
better documentation.

Traditional statically-typed languages, such as Java, C#,
and ML, primarily support the second of these specifica-
tions. Dynamically-typed languages such as Scheme primar-
ily support the first specification. Contracts [32, 13, 26,
21, 24, 28, 37, 25, 12, 8] provide a means to document
and enforce all of these specifications, but violations are
only detected dynamically, resulting in incomplete and late
(possibly post-deployment) detection of defects. This paper
presents the Sage programming language and type system,

Presented at the Scheme and Functional Programming
Workshop, September, 2006.

which is designed to support and enforce a wide range of
specification methodologies. Sage verifies correctness prop-
erties and detects defects via static checking wherever pos-
sible. However, Sage can also enforce specifications dynam-
ically, when necessary.

On a technical level, the Sage type system can be viewed
as a synthesis of three concepts: the type Dynamic; arbitrary
refinement types; and first-class types. These features add
expressive power in three orthogonal directions, yet they
all cooperate neatly within Sage’s hybrid static/dynamic
checking framework.

Type Dynamic. The type Dynamic [23, 1, 39] enables Sage
to support dynamically-typed programming. Dynamic is a
supertype of all types; any value can be upcast to type
Dynamic, and a value of declared type Dynamic can be
implicitly downcast (via a run-time check) to a more precise
type. Such downcasts are implicitly inserted when necessary,
such as when the operation add1 (which expects an Int)
is applied to a variable of type Dynamic. Thus, declaring
variables to have type Dynamic (which is the default if
type annotations are omitted) leads to a dynamically-typed,
Scheme-like style of programming.

These dynamically-typed programs can later be anno-
tated with traditional type specifications like Int and Bool.
One nice aspect of our system is that the programmer need
not fully annotate the program with types in order to reap
some benefit. Types enable Sage to check more properties
statically, but it is still able to fall back to dynamic checking
whenever the type Dynamic is encountered.

Refinement Types. For increased precision, Sage also
supports refinement types. For example, the following code
snippet defines the type of integers in the range from lo
(inclusive) to hi (exclusive):

{ x:Int | lo <= x && x < hi }
Sage extends prior work on decidable refinement types [44,
43, 18, 30, 35] to support arbitrary executable refinement
predicates — any boolean expression can be used as a
refinement predicate.

First-Class Types. Finally, Sage elevates types to be
first-class values, in the tradition of Pure Type Systems [5].
Thus, types can be returned from functions, which permits
function abstractions to abstract over types as well as terms.
For example, the following function Range takes two integers
and returns the type of integers within that range:

let Range (lo:Int) (hi:Int) : *
= { x:Int | lo <= x && x < hi };

Here, * is the type of types and indicates that Range returns
a type. Similarly, we can pass types to functions, as in the
following polymorphic identity function:

let id (T:*) (x:T) : T = x;

The traditional limitation of both first-class types and
unrestricted refinement types is that they are not stati-
cally decidable. Sage circumvents this difficulty by replacing
static type checking with hybrid type checking [14]. Sage
checks correctness properties and detects defects statically,
whenever possible. However, it resorts to dynamic checking
for particularly complicated specifications. The overall re-
sult is that precise specifications can be enforced, with most
errors detected at compile time, and violations of some com-
plicated specifications detected at run time.

1.1 Hybrid Type Checking

We briefly illustrate the key idea of hybrid type checking by
considering the function application

(factorial t)

Suppose factorial has type Pos → Pos, where Pos =
{x : Int | x > 0} is the type of positive integers, and that
t has some type T . If the type checker can prove (or refute)
that T <: Pos, then this application is well-typed (or ill-
typed, respectively). However, if T is a complex refinement
type or a complex type-producing computation, the Sage
compiler may be unable to either prove or refute that T <:
Pos because subtyping is undecidable.

In this situation, statically accepting the application may
result in the specification of factorial being violated at run
time, which is clearly unacceptable. Alternatively, statically
rejecting such programs would cause the compiler to reject
some well-typed programs, as in the Cayenne compiler [4].
Our previous experience with ESC/Java [17] indicates that
this is too brittle in practice.

One solution to this dilemma is to require that the
programmer provide a proof that T <: Pos (see e.g. [7, 36,
10]). While this approach is promising for critical software,
it may be somewhat heavyweight for widespread use.

Instead, Sage enforces the specification of factorial
dynamically, by inserting the following type cast to ensure
at run time that the result of t is a positive integer:

factorial (〈Pos〉 t)

This approach works regardless of whether T is the type
Dynamic, a complex refinement type, or a complex type-
producing computation.

Hybrid combinations of static and dynamic checking are
not new. For example, many existing language implementa-
tions enforce type safety for arrays using both static type
checks and dynamic bounds checks. Hybrid type check-
ing extends this approach to enforce user-defined specifi-
cations. Hybrid type checking also extends ideas from soft
typing [29, 42, 3], to detect type errors at compile time, in
the spirit of static type systems.

Prior work explored hybrid type checking in an idealized
setting, that of the simply-typed lambda-calculus with re-
finements only on the base types Int and Bool [14]. This
paper adapts hybrid type checking to the more technically
challenging domain of a rich language that includes all of
the features described above. We also provide an implemen-
tation and experimental validation of this approach.

1.2 The Sage Compilation Algorithm

The overall architecture of the Sage compiler is shown in
Figure 1. A key component of the Sage compiler is its sub-
type algorithm, which attempts to prove or disprove a sub-
type relationship S <: T (in the context of an environment

Figure 1: Sage Architecture

Program
w/ Spec

Sage
Compiler

Static
Type Error

Subtype
Algorithm

Theorem
Prover

Counter
Example
Database

Recompile
X,Y,Z,...

Compiled
Program

Sage
Run-Time

Dynamic
Type Error
w/ Counter
Example

Output

1

E). To obtain adequate precision, the subtype algorithm in-
corporates the following two modules:

Theorem Prover. Testing subtyping between refinement
types reduces to testing implication between refinement
predicates. In order to reason about these predicates, the
subtype algorithm translates each implication between Sage
predicates into a validity test of a logical formula, which
can be passed to an automated theorem prover (currently
Simplify [11]).

Counter-Example Database. If a compiler-inserted
cast from type S to type T fails at run time, Sage stores in
a counter-example database the fact that S is not a subtype
of T . The subtype algorithm consults this database during
compilation and will subsequently reject any program that
relies on S being a subtype of T . Thus, dynamic type errors
actually improve the ability of the Sage compiler to detect
type errors statically.

Moreover, when a compiler-inserted cast fails, Sage will
report a list of previously-compiled programs that contain
the same (or a sufficiently similar) cast, since these pro-
grams may also fail at run time. Thus, the counter-example
database functions somewhat like a regression test suite, in
that it can detect errors in previously compiled programs.

Over time, we predict that the database will grow to be
a valuable repository of common but invalid subtype rela-
tionships, leading to further improvements in the checker’s
precision and less reliance on compiler-inserted casts.

The combination of these features yields a subtype al-
gorithm that is quite precise — the number of compiler-
inserted casts is very small or zero on all of our benchmarks.
Dynamic checks are only necessary for a few particularly
complicated cases.

1.3 Contributions

The primary contributions of this paper are as follows:

• We present the Sage programming language, which sup-
ports flexible specifications in a syntactically lightweight
manner by combining arbitrary refinement types with
first-class types and the type Dynamic.

• We present a hybrid type checking algorithm for Sage
that circumvents the decidability limitations of this ex-
pressive type language. This type checker accepts all (ar-
bitrarily complicated) well-typed programs, and enforces
all interface specifications, either statically or dynam-
ically. The checker integrates compile-time evaluation,
theorem proving, and a database of failed type casts.

• We provide experimental results for a prototype imple-
mentation of Sage. These results show that Sage verifies
the vast majority of specifications in our benchmark pro-
grams statically.

The following section illustrates the Sage language through
a series of examples. Sections 3 and 4 define the syntax,
semantics, and type system for Sage. Section 5 presents
a hybrid compilation algorithm for the language. Sections 6
and 7 describe our implementation and experimental results.
Sections 8 and 9 discuss related work and future plans.

2. Motivating Examples
We introduce Sage through several examples illustrating
key features of the language, including refinement types, de-
pendent function types, datatypes, and recursive types. We
focus primarily on programs with fairly complete specifica-
tions to highlight these features. Programs could rely more
on the type Dynamic than these, albeit with fewer static
guarantees.

2.1 Binary Search Trees

We begin with the commonly-studied example of binary
search trees, whose Sage implementation is shown in Fig-
ure 2. The variable Range is of type Int → Int → *, where
* is the type of types. Given two integers lo and hi, the ap-
plication Range lo hi returns the following refinement type
describing integers in the range [lo, hi):

{x:Int | lo <= x && x < hi }
A binary search tree (BST lo hi) is an ordered tree

containing integers in the range [lo, hi). A tree may either
be Empty, or a Node containing an integer v ∈ [lo, hi) and
two subtrees containing integers in the ranges [lo, v) and
[v, hi), respectively. Thus, the type of binary search trees
explicates the requirement that these trees must be ordered.

The function search takes as arguments two integers lo
and hi, a binary search tree of type (BST lo hi), and an
integer x in the range [lo, hi). Note that Sage supports
dependent function types, and so the type of the third
argument to search can depend on the values of the first
and second arguments. The function search then checks if
x is in the tree. The function insert takes similar arguments
and extends the given tree with the integer x.

The Sage compiler uses an automatic theorem prover
to statically verify that the specified ordering invariants
on binary search trees are satisfied by these two functions.
Thus, no run-time checking is required for this example.

The precise type specifications enable Sage to detect
various common programming errors. For example, suppose
we inadvertently used the wrong conditional test:

24: if x <= v

For this (incorrect and ill-typed) program, the Sage com-
piler will report that the specification for insert is violated
by the first recursive call:

line 25: x does not have type (Range lo v)

Figure 2: Binary Search Trees

1: let Range (lo:Int) (hi:Int) : * =
2: {x:Int | lo <= x && x < hi };
3:
4: datatype BST (lo:Int) (hi:Int) =
5: Empty
6: | Node of (v:Range lo hi)*(BST lo v)*(BST v hi);
7:
8: let rec search (lo:Int) (hi:Int) (t:BST lo hi)
9: (x:Range lo hi) : Bool =
10: case t of
11: Empty -> false
12: | Node v l r ->
13: if x = v then true
14: else if x < v
15: then search lo v l x
16: else search v hi r x;
17:
18: let rec insert (lo:Int) (hi:Int) (t:BST lo hi)
19: (x:Range lo hi) : (BST lo hi) =
20: case t of
21: Empty ->
22: Node lo hi x (Empty lo x) (Empty x hi)
23: | Node v l r ->
24: if x < v
25: then Node lo hi v (insert lo v l x) r
26: else Node lo hi v l (insert v hi r x);

Similarly, if one of the arguments to the constructor Node is
incorrect, e.g.:

26: else Node lo hi v r (insert v hi r x);

the Sage compiler will report the type error:

line 26: r does not have type (BST lo v)

Notably, a traditional type system that does not support
precise specifications would not detect either of these errors.

Using this BST implementation, constructing trees with
specific constraints is straightforward (and verifiable). For
example, the following code constructs a tree containing only
positive numbers:

let PosBST : * = BST 1 MAXINT;
let nil : PosBST = Empty 1 MAXINT;
let add (t:PosBST) (x:Range 1 MAXINT) : PosBST =

insert 1 MAXINT t x;
let find (t:PosBST) (x:Range 1 MAXINT) : Bool =

search 1 MAXINT t x;

let t : PosBST = add (add (add nil 1) 3) 5;

Note that this fully-typed BST implementation inter-
operates with dynamically-typed client code:

let t : Dynamic = (add nil 1) in find t 5;

2.2 Regular Expressions

We now consider a more complicated specification. Figure 3
declares the Regexp data type and the function match,
which determines if a string matches a regular expression.
The Regexp datatype includes constructors to match any
single letter (Alpha) or any single letter or digit (AlphaNum),
as well as usual the Kleene closure, concatenation, and
choice operators. As an example, the regular expression

Figure 3: Regular Expressions and Names

datatype Regexp =
Alpha

| AlphaNum
| Kleene of Regexp
| Concat of Regexp * Regexp
| Or of Regexp * Regexp
| Empty;

let match (r:Regexp) (s:String) : Bool = ...

let Name = {s:String | match (Kleene AlphaNum) s};

“[a-zA-Z0-9]*” would be represented in our datatype as
(Kleene AlphaNum).

The code then uses match to define the type Name, which
refines the type String to allow only alphanumeric strings.
We use the type Name to enforce an important, security-
related interface specification for the following function
authenticate. This function performs authentication by
querying a SQL database (where ‘^’ denotes string concate-
nation):

let authenticate (user:Name) (pass:Name) : Bool =
let query : String =
("SELECT count(*) FROM client WHERE name =" ^
user ^ " and pwd=" ^ pass) in

executeSQLquery(query) > 0;

This code is prone to security attacks if given specially-
crafted non-alphanumeric strings. For example, calling

authenticate "admin --" ""

breaks the authentication mechanism because “--” starts
a comment in SQL and consequently “comments out” the
password part of the query. To prohibit this vulnerability,
the type:

authenticate : Name → Name → Bool

specifies that authenticate should be applied only to al-
phanumeric strings.

Next, consider the following user-interface code:

let username : String = readString() in
let password : String = readString() in
authenticate username password;

This code is ill-typed, since it passes arbitrary user input of
type String to authenticate. However, proving that this
code is ill-typed is quite difficult, since it depends on complex
reasoning showing that the user-defined function match is
not a tautology, and hence that not all Strings are Names.

In fact, Sage cannot statically verify or refute this code.
Instead, it inserts the following casts at the call site to
enforce the specification for authenticate dynamically:

authenticate (〈Name〉 username) (〈Name〉 password);

At run time, these casts check that username and password
are alphanumeric strings satisfying the predicate match
(Kleene AlphaNum). If the username “admin --” is ever
entered, the cast (〈Name〉 username) will fail and halt pro-
gram execution.

2.3 Counter-Example Database

Somewhat surprisingly, a dynamic cast failure actually
strengthens Sage’s ability to detect type errors statically. In

particular, the string “admin --” is a witness proving that
not all Strings are Names, i.e., E 6` String <: Name (where
E is the typing environment for the call to authenticate).
Rather than discarding this information, and potentially ob-
serving the same error on later runs or in different programs,
such refuted subtype relationships are stored in a database.
If the above code is later re-compiled, the Sage compiler
will discover upon consulting this database that String is
not a subtype of Name, and it will statically reject the call
to authenticate as ill-typed.

Additionally, the database stores a list of other programs
previously compiled under the assumption that String may
be a subtype of Name. These programs may also fail at run
time and Sage will also report that they must be recompiled
or modified to be accepted by the more-informed checker. It
remains to be seen how to best incorporate this feature into
a development process.

2.4 Printf

As a final example, we examine the printf function. The
number and type of the expected arguments to printf de-
pends in subtle ways on the format string (the first argu-
ment). In Sage, we can assign to printf the precise type:

printf : (format:String) -> (Printf Args format)

where the user-defined function

Printf Args : String -> *

returns the printf argument types for the given format
string. For example, (Printf Args "%d%d") evaluates to the
type Int → Int → Unit. Calls to printf are assigned
precise types, such as:

printf "%d%d" : Int -> Int -> Unit

since this term has type (Printf Args "%d%d"), which in
turn evaluates to Int→ Int→ Unit.

Thus, the Sage language is sufficiently expressive to need
no special support for accommodating printf and catching
errors in printf clients statically. In contrast, other lan-
guage implementations require special rules in the compiler
or run time to ensure the type safety of calls to printf. For
example, Scheme [40] and GHC [19, 38] leave all type check-
ing of arguments to the run time. OCaml [27], on the other
hand, performs static checking, but it requires the format
string to be constant.

Sage can statically check many uses of printf with
non-constant format strings, as illustrated by the following
example:

let repeat (s:String) (n:Int) : String =
if (n = 0) then "" else (s ^ (repeat s (n-1)));

// checked statically:
printf (repeat "%d" 2) 1 2;

The Sage compiler infers that printf (repeat "%d" 2)
has type Printf Args (repeat "%d" 2), which evaluates
(at compile-time) to Int → Int → Unit, and hence this
call is well-typed. Conversely, the compiler would statically
reject the following ill-typed call:

// compile-time error:
printf (repeat "%d" 2) 1 false;

For efficiency, and to avoid non-termination, the compiler
performs only a bounded number of evaluation steps before
resorting to dynamic checking. Thus, the following call re-
quires a run-time check:

Figure 4: Syntax, Constants, and Shorthands

Syntax:

s, t, S, T ::= Terms:
x variable
c constant
let x = t : S in t binding
λx :S. t abstraction
t t application
x :S → T function type

Constants:

* : *
Unit : *
Bool : *
Int : *

Dynamic : *
Refine : X :*→ (X → Bool) → *

unit : Unit
true : {b :Bool | b}
false : {b :Bool | not b}
not : b :Bool→ {b′ :Bool | b′ = not b}

n : {m :Int |m = n}
+ : n :Int→ m :Int→ {z :Int | z = n + m}
= : x :Dynamic→ y :Dynamic

→ {b :Bool | b = (x = y)}

if : X :*→ p :Bool
→ ({d :Unit | p} → X)
→ ({d :Unit | not p} → X)
→ X

fix : X :*→ (X → X) → X
cast : X :*→ Dynamic→ X

Shorthands:

S → T = x :S → T x 6∈ FV (T)
〈T 〉 = cast T

{x :T | t} = Refine T (λx :T. t)
ifT t1 then t2 else t3 =

if T t1 (λx :{d :Unit | t}. t2) (λx :{d :Unit | not t}. t3)

// run-time error:
printf (repeat "%d" 20) 1 2 ... 19 false;

As expected, the inserted dynamic cast catches the error.
Our current Sage implementation is not yet able to

statically verify that the implementation of printf matches
its specification (format :String→ (Printf Args format)).
As a result, the compiler inserts a single dynamic type cast
into the printf implementation. This example illustrates
the flexibility of hybrid checking — the printf specification
is enforced dynamically on the printf implementation, but
also enforced (primarily) statically on client code. We revisit
this example in Section 5.3 to illustrate Sage’s compilation
algorithm.

3. Language
3.1 Syntax and Informal Semantics

Sage programs are desugared into a small core language,
whose syntax and semantics are described in this section.

Since types are first class, Sage merges the syntactic cat-
egories of terms and types [5]. The syntax of the resulting
type/term language is summarized in Figure 4. We use the
following naming convention to distinguish the intended use
of meta-variables: x, y, z range over regular program vari-
ables; X, Y , Z range over type variables; s, t range over
regular program terms; and S, T range over types.

The core Sage language includes variables, constants,
functions, function applications, and let expressions. The
language also includes dependent function types, for which
we use Cayenne’s [4] syntax x : S → T (in preference over
the equivalent notation Πx : S. T). Here, S specifies the
function’s domain, and the formal parameter x can occur
free in the range type T . We use the shorthand S → T
when x does not occur free in T .

The Sage type system assigns a type to each well-formed
term. Since each type is simply a particular kind of term,
it is also assigned a type, specifically the type “*”, which
is the type of types [9]. Thus, Int, Bool, and Unit all have
type *. Also, * itself has type *.

The unification of types and terms allows us to pass types
to and from functions. For example, the following function
UnaryOp is a type operator that, given a type such as Int,
returns the type of functions from Int to Int.

UnaryOp
def
= λX :*. (X → X)

Type-valued arguments also support the definition of poly-
morphic functions, such as applyTwice, where the applica-
tion applyTwice Int add1 returns a function that adds two
to any integer. Thus, polymorphic instantiation is explicit in
Sage.

applyTwice
def
= λX :*. λf : (UnaryOp X). λx :X. f(f(x))

The constant Refine enables precise refinements of ex-
isting types. Suppose f : T → Bool is some arbitrary pred-
icate over type T . Then the type Refine T f denotes
the refinement of T containing all values of type T that
satisfy the predicate f . Following Ou et al. [35], we use
the shorthand {x :T | t} to abbreviate Refine T (λx :T. t).
Thus, {x :Int |x ≥ 0} denotes the type of natural numbers.

We use refinement types to assign precise types to con-
stants. For example, as shown in Figure 4, an integer n has
the precise type {m :Int |m = n} denoting the singleton set
{n}. Similarly, the type of the operation + specifies that its
result is the sum of its arguments:

n :Int→ m :Int→ {z :Int | z = n + m}
The apparent circularity where the type of + is defined
in terms of + itself does not cause any difficulties in our
technical development, since the semantics of refinement
types is defined in terms of the operational semantics.

The type of the primitive if is also described via refine-
ments. In particular, the “then” parameter to if is a thunk
of type ({d :Unit | p} → X). That thunk can be invoked only
if the domain {d :Unit | p} is inhabited, i.e., only if the test
expression p evaluates to true. Thus the type of if precisely
specifies its behavior.

The constant fix enables the definition of recursive func-
tions and recursive types. For example, the type of integer
lists is defined via the least fixpoint operation:

fix * (λL :*. Sum Unit (Pair Int L))

which (roughly speaking) returns a type L satisfying the
equation:

L = Sum Unit (Pair Int L)

Figure 5: Evaluation Rules

Evaluation s −→ t

E [s] −→ E [t] if s −→ t [E-Compat]

(λx :S. t) v −→ t[x := v] [E-App]
let x = v : S in t −→ t[x := v] [E-Let]

not true −→ false [E-Not1]
not false −→ true [E-Not2]

ifT true v1 v2 −→ v1 unit [E-If1]
ifT false v1 v2 −→ v2 unit [E-If2]

+ n1 n2 −→ n n = (n1 + n2) [E-Add]
= v1 v2 −→ c c = (v1 ≡ v2) [E-Eq]

〈Bool〉 true −→ true [E-Cast-Bool1]
〈Bool〉 false −→ false [E-Cast-Bool2]
〈Unit〉 unit −→ unit [E-Cast-Unit]

〈Int〉 n −→ n [E-Cast-Int]
〈Dynamic〉 v −→ v [E-Cast-Dyn]

〈x :S → T 〉 v −→ [E-Cast-Fn]
λx :S. 〈T 〉 (v (〈D〉 x))

where D = domain(v)

〈Refine T f〉 v −→ 〈T 〉 v [E-Refine]
if f (〈T 〉 v) −→∗ true

〈*〉 v −→ v [E-Cast-Type]
if v ∈ {Int, Bool, Unit, Dynamic, x :S → T, fix * f}

S[fix U v] −→ S[v (fix U v)] [E-Fix]

E ::= • | E t | v E Evaluation Contexts
S ::= • v | 〈•〉 v Strict Contexts

u, v, U, V ::= Values
λx :S. t abstraction
x :S → T function type
c constant
c v1 . . . vn constant, 0 < n < arity(c)
Refine U v refinement
fix U v recursive type

(Here, Sum and Pair are the usual type constructors for sums
and pairs, respectively.)

The Sage language includes two constants that are cru-
cial for enabling hybrid type checking: Dynamic and cast.
The type constant Dynamic [1, 39] can be thought of as the
most general type. Every value has type Dynamic, and casts
can be used to convert values from type Dynamic to other
types (and of course such downcasts may fail if applied to
inappropriate values).

The constant cast performs dynamic checks or coercions
between types. It takes as arguments a type T and a value
(of type Dynamic), and it attempts to cast that value to type
T . We use the shorthand 〈T 〉 t to abbreviate cast T t. Thus,
for example, the expression

〈{x :Int |x ≥ 0}〉 y

casts the integer y to the refinement type of natural num-
bers, and fails if y is negative.

3.2 Operational Semantics

We formalize the execution behavior of Sage programs with
the small-step operational semantics shown in Figure 5.
Evaluation is performed inside evaluation contexts E . Ap-
plication, let expressions, and the basic integer and boolean
operations behave as expected. Rule [E-Eq] uses syntactic
equality (≡) to test equivalence of all values, including func-
tion values1.

The most interesting reduction rules are those for casts
〈T 〉 v. Casts to one of the base types Bool, Unit, or Int
succeed if the value v is of the appropriate type. Casts to
type Dynamic always succeed.

Casts to function and refinement types are more complex.
First, the following partial function domain returns the
domain of a function value, and is defined by:

domain : Value → Term
domain(λx :T. t) = T

domain(fix (x :T → T ′) v) = T
domain(c v1 . . . vi−1) = type of ith argument to c

The rule [E-Cast-Fn] casts a function v to type x : S → T
by creating a new function:

λx :S. 〈T 〉 (v (〈D〉 x))

where D = domain(v) is the domain type of the function
v. This new function takes a value x of type S, casts it to
D, applies the given function v, and casts the result to the
desired result type T . Thus, casting a function to a different
function type will always succeed, since the domain and
range values are checked lazily, in a manner reminiscent of
higher-order contracts [13].

For a cast to a refinement type, 〈Refine T f〉 v, the
rule [E-Refine] first casts v to type T via the cast 〈T 〉 v and
then checks if the predicate f holds on this value. If it does,
the cast succeeds and returns 〈T 〉 v.

Casts to type * succeed only for special values of type *,
via the rule [E-Cast-Type].

The operation fix is used to define recursive functions
and types, which are considered values, and hence fix U v is
also a value. However, when this construct fix U v appears
in a strict position (i.e., in a function position or in a
cast), the rule [E-fix] performs one step of unrolling to yield
v (fix U v).

4. Type System
The Sage type system is defined via the type rules and
judgments shown in Figure 6. Typing is performed in an
environment E that binds variables to types and, in some
cases, to values. We assume that variables are bound at most
once in an environment and, as usual, we apply implicit α-
renaming of bound variables to maintain this assumption
and to ensure that substitutions are capture-avoiding.

The Sage type system guarantees progress (i.e., that
well-typed programs can only get stuck due to failed casts)
and preservation (i.e., that evaluation of a term preserves
its type). The proofs appear in a companion report [22].

The main typing judgment

E ` t : T

1 A semantic notion of equality for primitive types could provide
additional flexibility, although such a notion would clearly be
undecidable for higher-order types. In practice, syntactic equality
has been sufficient.

Figure 6: Type Rules

E ::= Environments:
∅ empty environment
E, x : T environment extension
E, x = v : T environment term extension

Type rules E ` t : T

E ` c : ty(c)
[T-Const]

(x : T) ∈ E or (x = v : T) ∈ E

E ` x : {y :T | y = x} [T-Var]

E ` S : * E, x : S ` t : T

E ` (λx :S. t) : (x :S → T)
[T-Fun]

E ` S : * E, x : S ` T : *

E ` (x :S → T) : *
[T-Arrow]

E ` t1 : (x :S → T) E ` t2 : S

E ` t1 t2 : T [x := t2]
[T-App]

E ` v : S E, (x = v : S) ` t : T

E ` let x = v : S in t : T [x := v]
[T-Let]

E ` t : S E ` S <: T

E ` t : T
[T-Sub]

assigns type T to term t in the environment E. In the rule
[T-Const], the auxiliary function ty returns the type of the
constant c, as defined in Figure 4. The rule [T-Var] for a
variable x extracts the type T of x from the environment,
and assigns to x the singleton refinement type {y :T | y = x}.
For a function λx :S. t, the rule [T-Fun] infers the type T of
t in an extended environment and returns the dependent
function type x :S → T , where x may occur free in T . The
type x :S → T is itself a term, which is assigned type * by
rule [T-Arrow], provided that both S and T have type * in
appropriate environments.

The rule [T-App] for an application (t1 t2) first checks
that t1 has a function type x : S → T and that t2 is in the
domain of t1. The result type is T with all occurrences of
the formal parameter x replaced by the actual parameter t2.

The type rule [T-Let] for let x = v : S in t first checks
that the type of the bound value v is S. Then t is typed in
an environment that contains both the type and the value of
x. These precise bindings are used in the subtype judgment,
as described below. Subtyping is allowed at any point in a
typing derivation via the rule [T-Sub].

The subtype judgment

E ` S <: T

states that S is a subtype of T in the environment E, and it
is defined as the greatest solution to the collection of subtype
rules in Figure 7. The rules [S-Refl] and [S-Dyn] allow every
type to be a subtype both of itself and of the type Dynamic.
The rule [S-Fun] for function types checks the usual con-
travariant/covariant subtype requirements on function do-

Figure 7: Subtype Rules

Subtype rules E ` S <: T

E ` T <: T
[S-Refl]

E ` T <: Dynamic
[S-Dyn]

E ` T1 <: S1 E, x : T1 ` S2 <: T2

E ` (x :S1 → S2) <: (x :T1 → T2)
[S-Fun]

E, F [x := v] ` S[x := v] <: T [x := v]

E, x = v : U, F ` S <: T
[S-Var]

s −→ s′ E ` C[s′] <: T

E ` C[s] <: T
[S-Eval-L]

t −→ t′ E ` S <: C[t′]

E ` S <: C[t]
[S-Eval-R]

E ` S <: T

E ` (Refine S f) <: T
[S-Ref-L]

E ` S <: T E, x : S |= f x

E ` S <: (Refine T f)
[S-Ref-R]

mains and codomains. The rule [S-Var] hygienically replaces
a variable with the value to which it is bound.

The remaining rules are less conventional. Rules [S-Eval-L]
and [S-Eval-R] state that the subtype relation is closed un-
der evaluation of terms in arbitrary positions. In these rules,
C denotes an arbitrary context:

C ::= • | C t | t C | λx :C. t | λx :T. C
| let x = C : S in t | let x = t : C in t
| let x = t : S in C

The rule [S-Ref-L] states that, if S is a subtype of T ,
then any refinement of S is also a subtype of T . When S
is a subtype of T , the rule [S-Ref-R] invokes the theorem
proving judgment E |= f x, discussed below, to determine
if f x is valid for all values x of type S. If so, then S is a
subtype of Refine T f .

Our type system is parameterized with respect to the
theorem proving judgment

E |= t

which defines the validity of term t in an environment E.
We specify the interface between the type system and the
theorem prover via the following axioms (akin to those found
in [35]), which are sufficient to prove soundness of the type
system. In the following, all environments are assumed to
be well-formed [22].

1. Faithfulness: If t −→∗ true then E |= t. If t −→∗ false
then E 6|= t.

2. Hypothesis: If (x : {y :S | t}) ∈ E then E |= t[y := x].

3. Weakening: If E, G |= t then E, F, G |= t.

4. Substitution: If E, (x : S), F |= t and E ` s : S then
E, F [x := s] |= t[x := s].

5. Exact Substitution: E, (x = v : S), F |= t if and only if
E, F [x := v] |= t[x := v].

6. Preservation: If s −→∗ t, then E |= C[s] if and only if
E |= C[t].

7. Narrowing: If E, (x : T), F |= t and E ` S <: T then
E, (x : S), F |= t.

An alternative to these axioms is to define the validity
judgment E |= t directly. In such an approach, we could say
that a term t is valid if, for all closing substitutions σ that
map the names in E to terms consistent with their types,
the term σ(t) evaluates to true:

∀σ if σ is consistent with E
then σ(t) −→∗ true

E |= t
[Validity]

This approach has several drawbacks. First, the rule makes
the type system less flexible with regard to the underlying
logic. More importantly, however, the rule creates a cyclic
dependency between validity and the typing of terms in σ.
Thus, consistency of the resulting system is non-obvious and
remains an open question. For these reasons, we stick to the
original axiomatization of theorem proving.

A consequence of the Faithfulness axiom is that the
validity judgment is undecidable. In addition, the subtype
judgment may require an unbounded amount of compile-
time evaluation. These decidability limitations motivate the
development of the hybrid type checking techniques of the
following section.

5. Hybrid Type Compilation
The Sage hybrid type checking (or compilation) algorithm
shown in Figure 8 type checks programs and simultaneously
inserts dynamic casts. These casts compensate for inevitable
limitations in the Sage subtype algorithm, which is a con-
servative approximation of the subtype relation.

5.1 Algorithmic Subtyping

For any subtype query E ` S <: T , the algorithmic subtyp-
ing judgment E `a

alg S <: T returns a result a ∈ {
√

,×, ?}
depending on whether the algorithm succeeds in proving (

√
)

or refuting (×) the subtype query, or whether it cannot de-
cide the query (?). Our algorithm conservatively approxi-
mates the subtype specification in Figure 6. However, spe-
cial care must be taken in the treatment of Dynamic. Since
we would like values of type Dynamic to be implicitly cast to
other types, such as Int, the subtype algorithm should con-
clude E `?

alg Dynamic <: Int (forcing a cast from Dynamic
to Int), even though clearly E 6` Dynamic <: Int. We thus
formalize our requirements for the subtype algorithm as the
following lemma.

Lemma 1 (Algorithmic Subtyping).

1. If E `
√

alg S <: T then E ` S <: T .

2. If E `×alg T1 <: T2 then ∀F, S1, S2 that are obtained from
E, T1, T2 by replacing the type Dynamic by any type, we
have that F 6` S1 <: S2.

Clearly, a näıve subtype algorithm could always return
the result “?” and thus trivially satisfy these requirements,
but more precise results enable Sage to verify more proper-
ties and to detect more errors at compile time.

This specification of the subtype algorithm is sufficient
for describing the compilation process, and we defer pre-
senting the full details of the algorithm until Section 6.

Figure 8: Compilation Rules

Compilation rules E ` s ↪→ t : T

(x : T) ∈ E or (x = t : T) ∈ E

E ` x ↪→ x : {y :T | y = x} [C-Var]

E ` c ↪→ c : ty(c)
[C-Const]

E ` S ↪→ S′ ↓ * E, x : S′ ` t ↪→ t′ : T

E ` (λx :S. t) ↪→ (λx :S′. t′) : (x :S′ → T)
[C-Fun]

E ` S ↪→ S′ ↓ * E, x : S′ ` T ↪→ T ′ ↓ *

E ` (x :S → T) ↪→ (x :S′ → T ′) : *
[C-Arrow]

E ` t1 ↪→ t′1 : U unrefine(U) = x :S → T
E ` t2 ↪→ t′2 ↓ S

E ` t1 t2 ↪→ t′1 t′2 : T [x := t′2]
[C-App1]

E ` t1 ↪→ t′1 ↓ (Dynamic→ Dynamic)
E ` t2 ↪→ t′2 ↓ Dynamic

E ` t1 t2 ↪→ t′1 t′2 : Dynamic
[C-App2]

E ` S ↪→ S′ ↓ * E ` v ↪→ v′ ↓ S′

E, (x = v′ : S′) ` t ↪→ t′ : T T ′ = T [x := v′]
E ` let x = v : S in t

↪→ let x = v′ : S′ in t′ : T ′

[C-Let]

Compilation and checking rules E ` s ↪→ t ↓ T

E ` t ↪→ t′ : S E `
√

alg S <: T

E ` t ↪→ t′ ↓ T
[CC-Ok]

E ` t ↪→ t′ : S E `?
alg S <: T

E ` t ↪→ (〈T 〉 t′) ↓ T
[CC-Chk]

Algorithmic subtyping E `a
alg S <: T

separate algorithm

5.2 Checking and Compilation

The compilation judgment

E ` s ↪→ t : T

compiles the source term s, in environment E, to a compiled
term t (possibly with additional casts), where T is the type
of t. The compilation and checking judgment

E ` s ↪→ t ↓ T

is similar, except that it takes as an input the desired type
T and ensures that t has type T .

Many of the compilation rules are similar to the corre-
sponding type rules, e.g., [C-Var] and [C-Const]. The rule
[C-Fun] compiles a function λx :S. t by compiling S to some
type S′ of type * and then compiling t (in the extended en-
vironment E, x : S′) to a term t′ of type T . The rule returns
the compiled function λx :S′. t′ of type x :S′ → T . The rule
[C-Arrow] compiles a function type by compiling the two

component types and checking that they both have type *.
The rule [C-Let] compiles the term let x = v : S in t by re-
cursively compiling v, S and t in appropriate environments.

The rules for function application are more interesting.
The rule [C-App1] compiles an application t1 t2 by compiling
the function t1 to some term t′1 of some type U . The type
U may be a function type embedded inside refinements. In
order to extract the actual type of the parameter to the
function, we use unrefine to remove any outer refinements
of U before checking the type of the argument t2 against the
expected type. Formally, unrefine is defined as follows:

unrefine : Term → Term
unrefine(x :S → T) = x :S → T

unrefine(Refine T f) = unrefine(T)
unrefine(S) = unrefine(S′) if S −→ S′

The last clause permits S to be simplified via evaluation
while removing outer refinements. Given the expressiveness
of the type system, this evaluation may not converge within
a given time bound. Hence, to ensure that our compiler
accepts all (arbitrarily complicated) well-typed programs,
the rule [C-App2] provides a backup compilation strategy for
applications that requires less static analysis, but performs
more dynamic checking. This rule checks that the function
expression has the most general function type Dynamic →
Dynamic, and correspondingly coerces t2 to type Dynamic,
resulting in an application with type Dynamic.

The rules defining the compilation and checking judg-
ment

E ` s ↪→ t ↓ T

illustrate the key ideas of hybrid type checking. The rules
[CC-Ok] and [CC-Chk] compile the given term and check
that the compiled term has the expected type T via the
algorithmic subtyping judgment

E `a
alg S <: T.

If this judgment succeeds (a =
√

), then [CC-OK] returns
the compiled term. If the subtyping judgment is undecided
(a = ?), then [CC-Chk] encloses the compiled term in the
cast 〈T 〉 to preserve dynamic type safety.

The compilation rules guarantee that a compiled program
is well-typed [22], and thus compiled programs only go
wrong due to failed casts. In addition, this property permits
type-directed optimizations on compiled code.

5.3 Example

To illustrate how Sage verifies specifications statically when
possible, but dynamically when necessary, we consider the
compilation of the following term:

t
def
= printf "%d" 4

For this term, the rule [C-App1] will first compile the subex-
pression (printf "%d") via the following compilation judg-
ment (based on the type of printf from Section 2.4):

∅ ` (printf "%d") ↪→ (printf "%d") : (Printf Args "%d")

The rule [C-App1] then calls the function unrefine to eval-
uate (Printf Args "%d") to the normal form Int → Unit.
Since 4 has type Int, the term t is therefore accepted as is;
no casts are needed.

However, the computation for (Printf Args "%d") may
not terminate within a preset time limit. In this case, the
compiler uses the rule [C-App2] to compile t into the code:

(〈Dynamic→ Dynamic〉 (printf "%d")) 4

At run time, (printf "%d") will evaluate to some function
(λx :Int. t′) that expects an Int, yielding the application:

(〈Dynamic→ Dynamic〉 (λx :Int. t′)) 4

The rule [E-Cast-Fn] then reduces this term to:

(λx :Dynamic. 〈Dynamic〉 ((λx :Int. t′) (〈Int〉 x))) 4

where the nested cast 〈Int〉 x dynamically ensures that the
next argument to printf must be an integer.

6. Implementation
Our prototype Sage implementation consists of roughly
5,000 lines of OCaml code. The run time implements the
semantics from Section 3, with one extension for supporting
the counter-example database when casts fail. Specifically,
suppose the compiler inserts the cast (〈T 〉 t) because it
cannot prove or refute some subtype test E ` S <: T . If that
cast fails, the run time inserts an entry into the database
asserting that E 6` S <: T .

Function casts must be treated with care to ensure blame
is assigned appropriately upon failure [13]. In particular,
if a cast inserted during the lazy evaluation of a function
cast fails, an entry for the original, top-level function cast
is inserted into the database rather than for the “smaller”
cast on the argument or return value.

The Sage subtype algorithm computes the greatest fixed
point of the algorithmic rules in Figure 9. These rules return
3-valued results which are combined with the 3-valued con-
junction operator ⊗:

⊗
√

? ×√ √
? ×

? ? ? ×
× × × ×

The algorithm attempts to apply the rules in the order
in which they are presented in the figure. If no rule applies,
the algorithm returns E `?

alg S <: T . Most of the rules
are straightforward, and we focus primarily on the most
interesting rules:

[AS-Db]: Before applying any other rules, the algorithm
attempts to refute that E ` S <: T by querying the
database of previously refuted subtype relationships. The
judgment E `×db S <: T indicates that the database in-
cludes an entry stating that S is not a subtype of T in
an environment E′, where E and E′ are compatible in
the sense that they include the same bindings for the free
variables in S and T . This compatibility requirement en-
sures that we only re-use a refutation in a typing context
in which it is meaningful.

[AS-Eval-L] and [AS-Eval-R]: These two rules evaluate the
terms representing types. The algorithm only applies these
two rules a bounded number of times before timing out
and forcing the algorithm to use a different rule or return
“?”. This prevents non-terminating computation as well
as infinite unrolling of recursive types.

[AS-Dyn-L] and [AS-Dyn-R]: These rules ensure that any
type can be considered a subtype of Dynamic and that
converting from Dynamic to any type requires an explicit
coercion.

[AS-Ref-R]: This rule for checking whether S is a subtype
of a specific refinement type relies on a theorem-proving
algorithm, E |=a

alg t, for checking validity. This algorithm
is an approximation of some validity judgment E |= t sat-

Figure 9: Subtyping Algorithm

Algorithmic subtyping rules E `a
alg S <: T

E `×db S <: T

E `×alg S <: T
[AS-Db]

E `
√

alg T <: T
[AS-Refl]

E `a
alg T1 <: S1

E, x : T1 `b
alg S2 <: T2 c = a⊗ b

E `c
alg (x :S1 → S2) <: (x :T1 → T2)

[AS-Fun]

E `?
alg Dynamic <: T

[AS-Dyn-L]

E `
√

alg S <: Dynamic
[AS-Dyn-R]

E `a
alg S <: T a ∈ {

√
, ?}

E `a
alg (Refine S f) <: T

[AS-Ref-L]

E `a
alg S <: T E, x : S |=b

alg f x c = a⊗ b

E `c
alg S <: (Refine T f)

[AS-Ref-R]

E, F [x := v] `a
alg S[x := v] <: T [x := v]

E, x = v : u, F `a
alg S <: T

[AS-Var]

s −→ s′ E `a
alg D[s′] <: T

E `a
alg D[s] <: T

[AS-Eval-L]

t −→ t′ E `a
alg S <: D2[t

′]

E `a
alg S <: D2[t]

[AS-Eval-R]

D ::= • | N D where N is a normal form

Algorithmic theorem proving E |=a
alg t

separate algorithm

Counter-example database E `×db S <: T

database of previously failed casts

isfying the axioms in Section 4. As with subtyping, the
result a ∈ {

√
, ?,×} indicates whether or not the theorem

prover could prove or refute the validity of t. The algorith-
mic theorem proving judgment must be conservative with
respect to the logic it is approximating, as captured in the
following requirement:

Requirement 2 (Algorithmic Theorem Proving).

1. If E |=
√

alg t then E |= t.

2. If E |=×
alg t then ∀E′, t′ obtained from E and t by

replacing the type Dynamic by any type, we have that
E′ 6|= t′.

Our current implementation of this theorem-proving
algorithm translates the query E |=a

alg t into input for
the Simplify theorem prover [11]. For example, the query

x : {x :Int |x ≥ 0} |=a
alg x + x ≥ 0

is translated into the Simplify query:

(IMPLIES (>= x 0) (>= (+ x x) 0))

for which Simplify returns Valid. Given the incomplete-
ness of Simplify (and other theorem provers), care must
be taken in how the Simplify results are interpreted. For
example, on the translated version of the query

x : Int |=a
alg x ∗ x ≥ 0

Simplify returns Invalid, because it is incomplete for
arbitrary multiplication. In this case, the Sage theorem
prover returns the result “?” to indicate that the validity
of the query is unknown. We currently assume that the
theorem prover is complete for linear integer arithmetic.
Simplify has very effective heuristics for integer arithmetic,
but does not fully satisfy this specification; we plan to
replace it with an alternative prover that is complete for
this domain.

Assuming that E |=a
alg t satisfies Requirement 2 and that

E `×db S <: T only if E 6` S <: T (meaning that the
database only contains invalid subtype tests), it is straight-
forward to show that the subtype algorithm E `a

alg S <: T
satisfies Lemma 1.

7. Experimental Results
We evaluated the Sage language and implementation us-
ing the benchmarks listed in Figure 10. The program
arith.sage defines and uses a number of mathematical
functions, such as min, abs, and mod, where refinement
types provide precise specifications. The programs bst.sage
and heap.sage implement and use binary search trees and
heaps, and the program polylist.sage defines and ma-
nipulates polymorphic lists. The types of these data struc-
tures ensure that every operation preserves key invariants.
The program stlc.sage implements a type checker and
evaluator for the simply-typed lambda calculus (STLC),
where Sage types specify that evaluating an STLC-term
preserves its STLC-type. We also include the sorting al-
gorithm mergesort.sage, as well as the regexp.sage and
printf.sage examples discussed earlier.

Figure 10 characterizes the performance of the subtype
algorithm on these benchmarks. We consider two configu-
rations of this algorithm, both with and without the the-
orem prover. For each configuration, the figure shows the
number of subtyping judgments proved (denoted by

√
), re-

futed (denoted by ×), and left undecided (denoted by ?).
The benchmarks are all well-typed, so no subtype queries
are refuted. Note that the theorem prover enables Sage
to decide many more subtype queries. In particular, many
of the benchmarks include complex refinement types that
use integer arithmetic to specify ordering and structure in-
variants; theorem proving is particularly helpful in verifying
these benchmarks.

Our subtyping algorithm performs quite well and verifies
a large majority of subtype tests performed by the compiler.
Only a small number of undecided queries result in casts.
For example, in regexp.sage, Sage cannot statically verify
subtyping relations involving regular expressions (they are
checked dynamically) but it statically verifies all other sub-

Figure 10: Subtyping Algorithm Statistics

Lines Without Prover With Prover
Benchmark of code

√
? ×

√
? ×

arith.sage 45 132 13 0 145 0 0
bst.sage 62 344 28 0 372 0 0
heap.sage 69 322 34 0 356 0 0
mergesort.sage 80 437 31 0 468 0 0
polylist.sage 397 2338 5 0 2343 0 0
printf.sage 228 321 1 0 321 1 0
regexp.sage 113 391 2 0 391 2 0
stlc.sage 227 677 11 0 677 11 0
Total 1221 4962 125 0 5073 14 0

type judgments. Some complicated tests in stlc.sage and
printf.sage must also be checked dynamically.

Despite the use of a theorem prover, compilation times for
these benchmarks is quite manageable. On a 3GHz Pentium
4 Xeon processor running Linux 2.6.14, compilation required
fewer than 10 seconds for each of the benchmarks, except
for polylist.sage which took approximately 18 seconds.
We also measured the number of evaluation steps required
during each subtype test. We found that 83% of the subtype
tests required no evaluation, 91% required five or fewer
steps, and only a handful of the the tests in our benchmarks
required more than 50 evaluation steps.

8. Related Work
The enforcement of complex program specifications, or con-
tracts, is the subject of a large body of prior work [32, 13,
26, 21, 24, 28, 37, 25, 12, 8]. Since these contracts are typ-
ically not expressible in classical type systems, they have
previously been relegated to dynamic checking, as in, for
example, Eiffel [32]. Eiffel’s expressive contract language is
strictly separated from its type system. Hybrid type check-
ing extends contracts with the ability to check many prop-
erties at compile time. Meunier et al have also investigated
statically verifying contracts via set-based analysis [31].

The static checking tool ESC/Java [17] supports expres-
sive JML specifications [26]. However, ESC/Java’s error
messages may be caused either by incorrect programs or
by limitations in its own analysis, and thus it may give false
alarms on correct (but perhaps complicated) programs. In
contrast, hybrid type checking only produces error messages
for provably ill-typed programs.

The Spec# programming system extends C# with ex-
pressive specifications [6], including preconditions, postcon-
ditions, and non-null annotations. Specifications are en-
forced dynamically, and can be also checked statically via
a separate tool. The system is somewhat less tightly inte-
grated than in Sage. For example, successful static veri-
fication does not automatically remove the corresponding
dynamic checks.

Recent work on advanced type systems has influenced our
choice of how to express program invariants. In particular,
Freeman and Pfenning [18] extended ML with another form
of refinement types. They work focuses on providing both
decidable type checking and type inference, instead of on
supporting arbitrary refinement predicates.

Xi and Pfenning have explored applications of dependent
types in Dependent ML [44, 43]. Decidability of type check-
ing is preserved by appropriately restricting which terms can
appear in types. Despite these restrictions, a number of in-
teresting examples can be expressed in Dependent ML. Our
system of dependent types extends theirs with arbitrary exe-

cutable refinement predicates, and the hybrid type checking
infrastructure is designed to cope with the resulting unde-
cidability. In a complementary approach, Chen and Xi [10]
address decidability limitations by providing a mechanism
through which the programmer can provide proofs of subtle
properties in the source code.

Recently, Ou, Tan, Mandelbaum, and Walker developed
a dependent type system that leverages dynamic checks [35]
in a way similar to Sage. Unlike Sage, their system is decid-
able, and they leverage dynamic checks to reduce the need
for precise type annotations in explicitly labeled regions of
programs. They consider mutable data, which we intend to
add to Sage in the future. We are exploring other language
features, such as objects [16], as well.

Barendregt introduced the unification of types and terms,
which allows types to be flexibly expressed as complex
expressions, while simplifying the underlying theory [5]. The
language Cayenne adopts this approach and copes with
the resulting undecidability of type checking by allowing a
maximum number of steps, somewhat like a timeout, before
reporting to the user that typing has failed [4]. Hybrid type
checking differs in that instead of rejecting subtly well-typed
programs outright, it provisionally accepts them and then
performs dynamic checking where necessary.

Other authors have considered pragmatic combinations
of both static and dynamic checking. Abadi, Cardelli, Pierce
and Plotkin [1] extended a static type system with a type
Dynamic that could be explicitly cast to and from any other
type (with appropriate run-time checks). Henglein charac-
terized the completion process of inserting the necessary
coercions, and presented a rewriting system for generating
minimal completions [23]. Thatte developed a similar system
in which the necessary casts are implicit [39]. For Scheme,
soft type systems [29, 42, 3, 15] prevent some basic type er-
rors statically, while checking other properties at run time.

The limitations of purely-static and purely-dynamic ap-
proaches have also motivated other work on hybrid analyses.
For example, CCured [33] is a sophisticated hybrid analysis
for preventing the ubiquitous array bounds violations in the
C programming language. Unlike our proposed approach, it
does not detect errors statically. Instead, the static analysis
is used to optimize the run-time analysis. Specialized hybrid
analyses have been proposed for other problems as well, such
as data race condition checking [41, 34, 2].

9. Conclusions and Future Work
Program specifications are essential for modular develop-
ment of reliable software. Sage uses a synthesis of first-
class types, Dynamic, and refinement types to enforce precise
specifications in a flexible manner. Our hybrid checking al-
gorithm extends traditional type checking with a theorem
prover, a database of counter-examples, and the ability to
insert dynamic checks when necessary. Experimental results
show that Sage can verify many correctness properties at
compile time. We believe that Sage illustrates a promising
approach for reliable software development.

A number of opportunities remain for future work. The
benefits of the refuted subtype database can clearly be
amplified by maintaining a single repository for all local
and non-local users of Sage. We also plan to integrate
randomized or directed [20] testing to refute additional
validity queries, thereby detecting more errors at compile
time. Since precise type inference for Sage is undecidable,
we plan to develop hybrid algorithms that infer precise types

for most type variables, and that may occasionally infer the
looser type Dynamic in particularly complicated situations.

Acknowledgments: We thank Robby Findler and Bo
Adler for useful feedback on this work.

References
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic

typing in a statically-typed language. In Symposium on
Principles of Programming Languages, pages 213–227, 1989.

[2] R. Agarwal and S. D. Stoller. Type inference for parame-
terized race-free Java. In Conference on Verification, Model
Checking, and Abstract Interpretation, pages 149–160, 2004.

[3] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing
with conditional types. In Symposium on Principles of
Programming Languages, pages 163–173, 1994.

[4] L. Augustsson. Cayenne — a language with dependent types.
In International Conference on Functional Programming,
pages 239–250, 1998.

[5] H. Barendregt. Introduction to generalized type systems.
Journal of Functional Programming, 1(2):125–154, 1991.

[6] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. In Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices:
International Workshop, pages 49–69, 2005.

[7] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development: Coq’Art: The Calculus of Inductive
Constructions. 2004.

[8] M. Blume and D. A. McAllester. A sound (and complete)
model of contracts. In International Conference on
Functional Programming, pages 189–200, 2004.

[9] L. Cardelli. A polymorphic lambda calculus with type:type.
Technical Report 10, DEC Systems Research Center, Palo
Alto, California, 1986.

[10] C. Chen and H. Xi. Combining programming with
theorem proving. In International Conference on Functional
Programming, pages 66–77, 2005.

[11] D. L. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A
theorem prover for program checking. Research Report
HPL-2003-148, HP Labs, 2003.

[12] R. B. Findler and M. Blume. Contracts as pairs of
projections. In Symposium on Logic Programming, pages
226–241, 2006.

[13] R. B. Findler and M. Felleisen. Contracts for higher-
order functions. In International Conference on Functional
Programming, pages 48–59, 2002.

[14] C. Flanagan. Hybrid type checking. In Symposium on
Principles of Programming Languages, pages 245–256, 2006.

[15] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and
M. Felleisen. Finding bugs in the web of program invariants.
In Conference on Programming Language Design and
Implementation, pages 23–32, 1996.

[16] C. Flanagan, S. N. Freund, and A. Tomb. Hybrid
object types, specifications, and invariants. In Workshop
on Foundations and Developments of Object-Oriented
Languages, 2006.

[17] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended static checking for
Java. In Conference on Programming Language Design and
Implementation, pages 234–245, 2002.

[18] T. Freeman and F. Pfenning. Refinement types for ML.
In Conference on Programming Language Design and
Implementation, pages 268–277, 1991.

[19] The Glasgow Haskell Compiler, release 6.4.1. Available from
http://www.haskell.org/ghc, 2006.

[20] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Conference on Programming
Language Design and Implementation, 2005.

[21] B. Gomes, D. Stoutamire, B. Vaysman, and H. Klawitter.
A language manual for Sather 1.1, 1996.

[22] J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and
C. Flanagan. Sage: Practical hybrid checking for expressive
types and specifications, extended report. Available at
http://www.soe.ucsc.edu/~cormac/papers/sage-full.ps,
2006.

[23] F. Henglein. Dynamic typing: Syntax and proof theory.
Science of Computer Programming, 22(3):197–230, 1994.

[24] R. C. Holt and J. R. Cordy. The Turing programming
language. Communications of the ACM, 31:1310–1424,
1988.

[25] M. Kölling and J. Rosenberg. Blue: Language specification,
version 0.94, 1997.

[26] G. T. Leavens and Y. Cheon. Design by contract with JML,
2005. avaiable at http://www.cs.iastate.edu/~leavens/JML/.

[27] X. Leroy (with D. Doligez, J. Garrigue, D. Rémy and J. Vouil-
lon). The Objective Caml system, release 3.08. http://caml.
inria.fr/pub/docs/manual-ocaml/, 2004.

[28] D. Luckham. Programming with specifications. Texts and
Monographs in Computer Science, 1990.

[29] M. Fagan. Soft Typing. PhD thesis, Rice University, 1990.

[30] Y. Mandelbaum, D. Walker, and R. Harper. An effective
theory of type refinements. In International Conference on
Functional Programming, pages 213–225, 2003.

[31] P. Meunier, R. B. Findler, and M. Felleisen. Modular set-
based analysis from contracts. In Symposium on Principles
of Programming Languages, pages 218–231, 2006.

[32] B. Meyer. Object-oriented Software Construction. Prentice
Hall, 1988.

[33] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-
safe retrofitting of legacy code. In Symposium on Principles
of Programming Languages, pages 128–139, 2002.

[34] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race
detection. In Symposium on Principles and Practice of
Parallel Programming, pages 167–178, 2003.

[35] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic
typing with dependent types. In IFIP International
Conference on Theoretical Computer Science, pages 437–
450, 2004.

[36] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. In International Conference on
Automated Deduction, pages 748–752, 1992.

[37] D. L. Parnas. A technique for software module specification
with examples. Communications of the ACM, 15(5):330–
336, 1972.

[38] Paul Hudak and Simon Peyton-Jones and Philip Wadler
(eds.). Report on the programming language Haskell: A
non-strict, purely functional language version 1.2. SIGPLAN
Notices, 27(5), 1992.

[39] S. Thatte. Quasi-static typing. In Symposium on Principles
of Programming Languages, pages 367–381, 1990.

[40] Sussman, G.J. and G.L. Steele Jr. Scheme: An interpreter
for extended lambda calculus. Memo 349, MIT AI Lab,
1975.

[41] C. von Praun and T. Gross. Object race detection. In ACM
Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 70–82, 2001.

[42] A. Wright and R. Cartwright. A practical soft type
system for Scheme. In Conference on Lisp and Functional
Programming, pages 250–262, 1994.

[43] H. Xi. Imperative programming with dependent types. In
IEEE Symposium on Logic in Computer Science, pages
375–387, 2000.

[44] H. Xi and F. Pfenning. Dependent types in practical
programming. In Symposium on Principles of Programming
Languages, pages 214–227, 1999.

