Stephen N. Freund

April 10, 2024

Computer Science Department Williams College Williamstown, MA 01267 ${\it freund@cs.williams.edu} \\ 413\text{-}597\text{-}4260 \\ {\it http://www.cs.williams.edu/}{\sim} {\it freund}$

PRIMARY RESEARCH INTERESTS

Design and implementation of programming languages; race condition and atomicity checking; dynamic and static program analysis; verification of multithreaded programs; programming environments.

EDUCATION

Ph.D. in Computer Science, Stanford University	2000
M.S. in Computer Science, Stanford University	1998
B.S. in Computer Science, Stanford University	1995

PRINCIPAL EMPLOYMENT

Computer Science Department, Williams College

A. Barton Hepburn Professor	2023-present
Department Chair & A. Barton Hepburn Professor	2022 - 2023
Department Chair & John B. McCoy and John T. McCoy Professor	2020-2022
Professor	2014 - 2020
Department Chair & Associate Professor	2011 - 2014
Associate Professor	2008 - 2011
Assistant Professor	2002 - 2008

OTHER POSITIONS

Visiting Researcher University of California, Santa Cruz	2005 – present
Visiting Scholar University of Massachusetts, Amherst	2014 - 2018, $2023 - present$
Consultant HP Labs, Systems Research Center	2002 - 2003
Member of Research Staff Compaq Systems Research Center	2000-2002

Research Intern and Consultant Compaq Systems Research Center 1999 – 2000 Research Assistant, with Prof. John Mitchell Stanford University 1995 – 2000 Research Assistant, with Prof. Eric Roberts Stanford University 1993 – 1995

CLASSES TAUGHT AT WILLIAMS

CSCI 104: Data Science and Computation for All
CSCI 134: Introduction to Computer Science
CSCI 136: Data Structures and Advanced Programming
CSCI 326: Software Methods
CSCI 334: Principles of Programming Languages
CSCI 434T: Compiler Design
CSCI 023: Independent Research and Development in Computer Science
CSCI 010: Introduction to C, Unix, and Software Tools

STUDENT RESEARCH SUPERVISED

Suttree de Lorge AnchorLite: A Visual Editor for Concurrency Specification	Summer 2022
Margaret Allen and David Lee Inferring Synchronization Disciplines to Verify Atomicity of	Summer 2019 f Concurrent Code
Louisa Nyhus Synthesizing Synchronization Disciplines	Summer 2018
Dustin Rhodes (UCSC) Access Classification for Race Detection Optimization	PhD Thesis Committee 2017 – 2018
Matheus Cruz Correia de Carvalho Souza Optimizing Race Detection: Field Shadow State Compressi	Summer 2016 ion
Miranda Chaiken Dynamic Lock Adaptation	Summer 2016
David Moon Dynamic Verification of Concurrency Specifications	Honors Thesis 2015 – 2016
Alexander Majercik and Yitong Tseo UberLock: An Adaptive Locking Mechanism for Concurren	Summer 2015 at Programming
David Moon Optimizing Dynamic Race Detection with Hash Consing	Summer 2015
Emma Harrington Greed and Altruism on Stack Overflow	Honors Thesis $2014 - 2015$

Winner, CRA Outstanding Undergraduate Researcher Awards

Second Place, Grace Hopper Conference Student Research Contest

Parker Finch Honors Thesis 2013 – 2014

Decoupling and Coalescing Race Checks

Emma Harrington Summer 2013, Winter 2014

Dynamic Escape Analysis for Race Checking

James Wilcox Honors Thesis 2012 – 2013

Optimizing Dynamic Race Detection in Array-Intensive Programs

Honorable Mention, CRA Outstanding Undergraduate Researcher Awards

James Wilcox Summer 2012

Whole-Program Cooperability Analysis

Parker Finch Summer 2012 and Winter Study 2012

Optimizing Array Representations in Dynamic Race Detectors

Antal Spector-Zabusky Honors Thesis 2011 – 2012

Checking Temporal Properties of Concurrent Programs

Honorable Mention, CRA Outstanding Undergraduate Researcher Awards

Antal Spector-Zabusky Summer 2011

Visualizing Feasible Program Executions under a Relaxed Memory Model

Diogenese Nunez Summer 2010

Statistical Sampling for Dynamic Concurrency Analyses

Caitlin Sadowski (UCSC) PhD Thesis Committee 2010 – 2012

Precise Dynamic Prediction of Concurrency Errors

Jaeheon Yi (UCSC) PhD Thesis Committee 2008 – 2011

Dynamic Analysis of Large-Scale Programs

Ben Wood and Catalin Iordan Summer 2008

Dynamic Heap Abstraction

Kenneth Knowles (UCSC)

MS Thesis Committee 2008

Executable Refinement Types: Hybrid Type Checking and Type Reconstruction

Ben Wood Honor Thesis 2008 – 2008

Hominy Grits: Specification & Inference of Synchronization Disciplines for Concurrent Programs

Honorable Mention, CRA Outstanding Undergraduate Researcher Awards

Ben Wood Summer 2007

Sound and Precise Race Detection with Goldilocks

Salvador Villa Summer 2007

Fault Injection for Multithreaded Programs

Paul Stansifer Honors Thesis, 2006 – 2007

Alias Annotations for Faster Garbage Collection

Aaron Tomb (UCSC) PhD Thesis Committee 2006 – 2011

Hybrid Verification

Daniel Libicki (UCSC)

MS Thesis Committee 2006

The Glib Programming Language

Marina Lifshin Summer 2004

Checking Atomicity Requirements in Multithreaded Programs

Peter Applegate Summer 2003

Solving Set Constraints with Substitutions Using Boolean Satisfiability

Professional Activities

Leadership and Organizing Committees

General Chair, ACM Conference on Programming Language Design and Implementation (PLDI), 2021

Steering Committee, PLDI, 2021 – present

Program Committee Chair, PASTE 2013 (co-chair)

Program Committee Chair, FTfJP 2011

Program Committee Chair, NEPLS 2005

Sponsorship Co-Chair, PLDI 2019 and 2020

ACM SIGPLAN Education Board, 2009–2016

Reviewing

Program Committees: PLDI 2020, PLDI 2018 (EPC), PLDI 2017 (EPC), PLDI 2016 (ERC), OOPSLA 2016 (ERC), ASPLOS 2014 (ERC), HotPar 2013, WoDet 2013, PLDI 2013, SPLASH-E 2013, RV 2012, FOOL 2012, PLDI 2012, POPL 2010, TRANSACT 2010, DEFECTS 2009, IBM PL Day 2009, VAMP 2007, TRANSACT 2006, FOOL 2006, NEPLS 2005, GTTSE 2005

NSF Review Panelist, 2004, 2007, 2008, 2009, 2010, 2012, 2013, 2014, 2016, 2017

External Honors Examiner for Swarthmore College, 2004, 2013

External reviewer for tenure/promotion decisions, 2008, 2010, 2013, 2020, 2023

Invited Tutorial Presentations

UPMARC Multicore Computing Summer School, 2014

International Conference on Runtime Verification, 2012

Reliable Software Systems Summer School, University of Oregon, July 2005

Other

Panelist for CRA-E Panel on the Academic Careers Landscape, FCRC 2023

Panelist for PLMW, PLDI 2020

GRE Computer Science Committee, Education Testing Services (ETS), 2008–2010

Member, Association of Computing Machinery

RESEARCH GRANTS

NSF 2243636. SHF/RUI: Keystone: Modular Concurrent Software Verification Principal Investigator. \$259,949.	2023 - 2026
NSF 1812951. SHF/RUI: Synchronicity: A Framework for Synthesizing Concurrent Software from Sequential and Cooperative Specifications Principal Investigator. \$199,999.	2018 - 2021
NSF 1439042. XPS/RUI: SCORE: Scalability-Oriented Optimization Principal Investigator. \$252,000.	2014 - 2018
NSF 1421051. SHF/RUI: Fast and Precise Dynamic Race Detection: Eliminating State and Checking Redundancy Principal Investigator. \$198,993.	2014 - 2017
NSF 1116825. SHF/RUI: Static and Dynamic Analysis for Cooperative Concurrency Principal Investigator. \$134,059.	2011 - 2014
NSF 0644130. CAREER: Hybrid Atomicity Checking Principal Investigator. \$400,000.	2007 - 2012
NSF 0341387. HDCCSR: Checking Atomicity for Improved Multithreaded Software Reliability Principal Investigator. \$218,000.	2003 - 2007
NSF 0306486. RUI: Modules and Parallel Specialization of Object Types Co-Principal Investigator. \$206,901.	2003 - 2006
NSF Graduate Research Fellowship	1995 - 1999
Awards	
PLDI Most Influential Paper Award for "FastTrack: Efficient and Precise Happens Before Race Detection"	2019
PLDI Distinguished Artifact Award, for "BigFoot: Static Check Placement for Dynamic Race Detection"	2017
ECOOP Best Paper Award, for "RedCard: Redundant Check Elimination for Dynamic Race Detectors,"	2013
Journal of Theoretical Computer Science Top Cited Article Award, for "Modular Verification of Multithreaded Programs"	2010
SIGSOFT Distinguished Paper Award, for "Exploiting Purity for Atomicity"	2004

PUBLICATIONS

In refereed journals, conferences, and workshops:

"The Anchor Verifier for Blocking and Non-blocking Concurrent Software," with Cormac Flanagan. *Proceedings of the ACM on Programming Languages: OOPSLA*, 156:1–156:29, 2020.

"VerifiedFT: A Verified, High-Performance Precise Dynamic Race Detector," with James R. Wilcox (Williams '13) and Cormac Flanagan. *Proceedings of the ACM Symposium on Principles and Practice of Parallel Programming*, pages 354–367, 2018.

"BigFoot: Static Check Placement for Dynamic Race Detection," with Dustin Rhodes and Cormac Flanagan. Proceedings of the ACM Conference on Programming Language Design and Implementation, pages 141–156, 2017

PLDI 2017 Distinguished Artifact Award.

"Correctness of Partial Escape Analysis for Multithreading Optimization," with Dustin Rhodes and Cormac Flanagan. Workshop on Formal Techniques for Java-like Programs, 5 pages, 2017.

"Shadow State Compression for Precise Dynamic Race Detection," with James Wilcox (Williams '13), Parker Finch (Williams '14), and Cormac Flanagan. *Automated Software Engineering*, 11 pages, 2015.

"Cooperative Types for Controlling Thread Interference in Java," with Jaeheon Yi, Tim Disney, and Cormac Flanagan. *Science of Computer Programming*, Volume 112(3), pages 227–260, 2015.

"RedCard: Redundant Check Elimination for Dynamic Race Detectors," with Cormac Flanagan. European Conference on Object-Oriented Programming, 25 pages, 2013.

ECOOP 2013 Best Paper Award.

"Cooperative Types for Controlling Thread Interference in Java," with Jaeheon Yi, Tim Disney, and Cormac Flanagan. *International Symposium on Software Testing and Analysis*, 11 pages, 2012.

"Types for Precise Thread Interference," with Jaeheon Yi, Tim Disney, and Cormac Flanagan. Workshop on Foundations of Object-Oriented Languages, 12 pages, 2011.

"Adversarial Memory for Detecting Destructive Races," with Cormac Flanagan. *Proceedings of the ACM Conference on Programming Language Design and Implementation*, pages 244-254, 2010.

"FastTrack: Efficient and Precise Happens Before Race Detection," with Cormac Flanagan. Communications of the ACM, Volume 53(11), pages 93–101, 2010.

"The RoadRunner Dynamic Analysis Framework for Concurrent Programs," with Cormac Flanagan. Proceedings of the ACM Workshop on Program Analysis for Software Tools and Engineering, pages 1-8, 2010.

"FastTrack: Efficient and Precise Happens Before Race Detection," with Cormac Flanagan. Proceedings of the ACM Conference on Programming Language Design and Implementation, pages 121-133, 2009.

Communications of the ACM Research Highlight, 2010.

Most Influential PLDI Paper Award, 2019

"SingleTrack: A Dynamic Determinism Checker for Multithreaded Programs," with Cormac Flanagan and Caitlin Sadowski. European Symposium on Programming, pages 394-409, 2009.

"The Role of Programming Languages in Teaching Concurrency," with Kim B. Bruce and Doug Lea. Workshop on Curricula in Concurrency and Parallelism, 3 pages, 2009.

"Velodrome: A Sound and Complete Dynamic Atomicity Checker for Multithreaded Programs," with Cormac Flanagan and Jaeheon Yi. *Proceedings of the ACM Conference on Programming Language Design and Implementation*, pages 293-303, 2008.

"Types for Atomicity: Static Checking and Inference for Java," with Cormac Flanagan, Marina Lifshin (Williams '05), and Shaz Qadeer. *ACM Transactions on Programming Languages and Systems*, volume 30(4), pages 1–53, 2008.

"Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs," with Cormac Flanagan. Science of Computer Programming, volume 71(2), pages 89–109, 2008.

"Programming Languages in a Liberal Arts Education," with Kim B. Bruce. SIGPLAN Workshop on Undergraduate Programming Language Curricula, SIGPLAN Notices, volume 43(11), pages 45–49, 2008.

"Programming Languages as Part of Core Computer Science," with Kim B. Bruce. SIGPLAN Workshop on Undergraduate Programming Language Curricula, SIGPLAN Notices, volume 43(11), pages 50–54, 2008.

"Type Inference Against Races," with Cormac Flanagan. Science of Computer Programming, volume 64(1), pages 140–165, 2007.

"Types for Safe Locking: Static Race Detection for Java," with Martín Abadi and Cormac Flanagan. *ACM Transactions on Programming Languages and Systems*, volume 28(2), pages 207–255, 2006.

"Dynamic Architecture Extraction," with Cormac Flanagan. Proceedings of the Workshop on Formal Approaches to Software Testing and Runtime Verification, LNCS volume 4262, pages 209–224, 2006.

"Sage: Hybrid Checking for Flexible Specifications," with Jessica Gronski, Kenneth Knowles, Aaron Tomb, and Cormac Flanagan. Workshop on Scheme and Functional Programming, 12 pages, 2006.

"Hybrid Types, Invariants, and Refinements for Imperative Objects," with Cormac Flanagan and Aaron Tomb. Workshop on Foundations and Developments of Object-Oriented Languages, 12 pages, 2006.

- "Exploiting Purity for Atomicity," with Cormac Flanagan and Shaz Qadeer. *IEEE Transactions on Software Engineering*, volume 31(4), 275–291, 2005.
- "Modular Verification of Multithreaded Programs," with Cormac Flanagan, Shaz Qadeer, and Sanjit A. Seshia. *Theoretical Computer Science*, volume 338(1–3), pages 153–183, 2005.

Theoretical Computer Science Top Cited Article (2005–2010) Award.

- "Type Inference for Atomicity," with Cormac Flanagan and Marina Lifshin (Williams '05). Proceedings of the ACM Workshop on Types in Language Design and Implementation, pages 47–58, 2005.
- "Automatic Synchronization Correction," with Cormac Flanagan. Workshop on Synchronization and Concurrency in Object-Oriented Languages, 10 pages, 2005.
- "Type Inference Against Races," with Cormac Flanagan. *Proceedings of the Static Analysis Symposium*, pages 116–132, 2004.
- "Exploiting Purity for Atomicity," with Cormac Flanagan and Shaz Qadeer. *Proceedings of the ACM International Symposium on Software Testing and Analysis*, pages 221–231, 2004.

ACM SIGSOFT Distinguished Paper Award.

- "Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs," with Cormac Flanagan. *Proceedings of the ACM Symposium on Principles of Programming Languages*, pages 256–267, 2004.
- "Checking Concise Specifications for Multithreaded Software," with Shaz Qadeer. *Journal of Object Technology*, volume 3(6), pages 81–101, 2004.
- "Checking Concise Specifications for Multithreaded Software," with Shaz Qadeer. Workshop on Formal Techniques for Java-like Programs, 10 pages, 2003.
- "A Type System for the Java Bytecode Language and Verifier," with John C. Mitchell. *Journal of Automated Reasoning*, volume 30(3–4), pages 271–321, 2003.
- "Run-Time Type Checking for Binary Programs," with Mike Burrows and Janet Wiener. Proceedings of the International Conference on Compiler Construction, pages 90–105, 2003.
- "Thread-Modular Verification for Shared-Memory Programs," with Cormac Flanagan and Shaz Qadeer. *Proceedings of the European Symposium on Programming*, pages 262–277, 2002.
- "Safe Asynchronous Exceptions For Python," with Mark P. Mitchell. *Lightweight Languages Workshop*, 6 pages, 2002.
- "Detecting Race Conditions in Large Programs," with Cormac Flanagan. Proceedings of the ACM Workshop on Program Analysis for Software Tools and Engineering, pages 90–96, 2001.
- "Type-Based Race Detection for Java," with Cormac Flanagan. Proceedings of the ACM Conference on Programming Language Design and Implementation, pages 219–232, 2000.
- "Type-Based Race Detection for Java," with Cormac Flanagan. Short topic at *IEEE Conference on Logic in Computer Science*, 2 pages, 2000.

- "A Type System for Object Initialization in the Java Bytecode Language," with John C. Mitchell. *ACM Transactions on Programming Languages and Systems*, volume 21(6), pages 1196–1250, 1999.
- "A Formal Framework for the Java Bytecode Language and Verifier," with John C. Mitchell. Proceedings of the ACM Conference on Object-Oriented Programming: Systems, Languages and Applications, pages 147–166, 1999.
- "A Type System for Object Initialization in the Java Bytecode Language," with John C. Mitchell. *Proceedings of the ACM Conference on Object-Oriented Programming: Systems, Languages and Applications*, pages 210–227, 1998.
- "The Costs and Benefits of Java Bytecode Subroutines." Workshop on the Formal Underpinnings of the Java Paradigm, 14 pages, 1998.
- "Adding Type Parameterization to the Java Language," with Ole Agesen and John C. Mitchell. Proceedings of the ACM Conference on Object-Oriented Programming: Systems, Languages and Applications, pages 49–65, 1997.
- "A Type System for Object Initialization in the Java Bytecode Language," with John C. Mitchell. *Proceedings of the Workshop on Higher Order Operational Techniques in Semantics* (ENTCS, volume 10), 4 pages, 1997. Also presented at *Workshop on Security and Languages*, 1997.
- "Thetis: An ANSI C Programming Environment Designed for Introductory Use," with Eric Roberts. *Proceedings of the ACM SIGCSE Technical Symposium on Computer Science Education*, pages 300–304, 1996.

In edited volumes, technical reports, patents, and other venues:

- PLDI '21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, with Eran Yahav (editors). 2021.
- "Teaching and Researching Programming Languages at a Liberal Arts College." *The Programming Languages Enthusiast*, 2015. Available at: http://www.pl-enthusiast.net/2015/03/16/teaching-and-researching-pl-at-a-liberal-arts-college/.
- "Cooperative Concurrency for a Multicore World (Extended Abstract)," with Jaeheon Yi, Caitlin Sadowski, and Cormac Flanagan. *Proceedings of the International Conference on Runtime Verification*, 3 pages, 2011.
- "Why Undergraduates Should Learn the Principles of Programming Languages," with Kim Bruce, Chair (Pomona College), Kathi Fisler (WPI), Dan Grossman (University of Washington), Matthew Hertz (Canisius College), Gary T. Leavens (University of Central Florida), Andrew Myers (Cornell University), Larry Snyder (University of Washington). 2010.
- "What a Programming Languages Curriculum Should Include," with Kim Bruce, Robert Harper, Jim Larus, and Gary Leavens (lead authors). *Proceedings of the SIGPLAN Workshop on Undergraduate Programming Language Curricula*, SIGPLAN Notices, volume 43(11), pages 11–24, 2008.

"Method and apparatus for verifying data local to a single thread," with Cormac Flanagan. *United States Patent* 6,817,009, issued 2004.

"Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs (Summary)," with Cormac Flanagan. Proceedings of Workshop on Parallel and Distributed Systems: Testing and Debugging, invited contribution, 2 pages, 2004.

"Exploiting Purity for Atomicity (extended version)," with Cormac Flanagan and Shaz Qadeer. Williams College Technical Note 04-05, 23 pages, 2004.

"Partial Type and Effect Inference for Rcc/Java is NP-Complete," with Cormac Flanagan. Williams College Technical Note 04-01, 5 pages, 2004.

"Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs," with Cormac Flanagan. Williams College Technical Note CS-03-03, 12 pages, 2003.

"Safe Asynchronous Exceptions For Python," with Mark P. Mitchell. Williams College Technical Note 02-2002, 6 pages, 2002.

"Checking Concise Specifications for Multithreaded Software (extended version)," with Shaz Qadeer. Williams College Technical Note 01-2002, 16 pages, 2002.

"Thread-Modular Verification for Shared-Memory Programs (extended version)," with Cormac Flanagan and Shaz Qadeer. Compaq Systems Research Center Technical Note 2001-03, 19 pages, 2001.

"A Type System for Java Bytecode Subroutines and Exceptions," with John C. Mitchell. Stanford Computer Science Technical Note STAN-CS-TN-99-91, 20 pages, 1999.

Dissertation:

Type Systems for Object-Oriented Intermediate Languages, Stanford University, 299 pages, 2000

PUBLICLY AVAILABLE SOFTWARE

The Anchor Verifier 2020

Program verifier accompanying our OOPSLA 2020 paper http://anchor-verifier.com

RoadRunner Dynamic Analysis Framework

2009 - present

A framework for writing dynamic analyses for concurrent Java programs http://www.cs.williams.edu/~freund/rr/

VerifiedFT Race Detector

2018

Artifact accompanying our PPoPP 2018 paper http://www.cs.williams.edu/~freund/papers.html

BigFoot Race Detector

2017

Artifact accompanying our PLDI 2017 paper http://www.cs.williams.edu/ \sim freund/papers.html

INVITED TALKS AND PRESENTATIONS

CSCI 104: Data Science and Computing For All

Workshop on Data Science in Liberal Arts, Bryn Mawr, 2023

BigFoot: Static Check Placement for Dynamic Race Detection

Microsoft Research, Redmond, WA, Aug. 2017

Data Race Detection: FastTrack and Beyond

University of Massachusetts, Amherst, MA, April 2017

SCORE: Scalability-Oriented Optimization

NSF Workshop on Exploiting Parallelism and Scalability (XPS), Arlington, VA, June 2015

Tutorial: Analysis Techniques to Detect Concurrency Errors

UPMARC Summer School on Multicore Computing, Uppsala, Sweden, July 2014

(Tutorial presented with Cormac Flanagan.)

Dynamic Analyses for Data Race Detection

University of Massachusetts, Amherst, MA, March and November 2013

Tutorial: Dynamic Analyses for Concurrency

International Conference on Runtime Verification, Istanbul, Turkey, September 2012

(Tutorial presented with John Erickson and Madan Musuvathi.)

Cooperative Concurrency for a Multicore World

IBM Programming Languages Day, Hawthorne, NY, June 2012

University of Massachusetts, Amherst, MA, February 2012

University of Washington, Seattle, WA, November 2011

Stopping the Software Bug Epidemic

Faculty Lecture Series, Williams College, February 2011

FastTrack and Jumble: Efficient and Precise Dynamic Detection of Destructive Races

Cornell University, March 2011

Harvard University, November 2010

FastTrack: Efficient and Precise Dynamic Race Detection

Williams College, October 2009

University of Massachusetts, Amherst, MA, September 2009

UC Santa Cruz, Santa Cruz, CA, May 2009

Types for Concurrency (Invited Keynote Lecture

Schloss Dagstuhl on Design and Validation of Concurrent Systems, Germany, Aug. 2009

Squashing the Bugs: Dynamic and Static Checkers for Concurrency

UC Santa Cruz, Santa Cruz, CA, Feb. 2009

Velodrome: Sound and Complete Atomicity Checking

Brown University, Providence, RI, March 2009

Princeton University, Princeton, NJ, March 2009

Pomona College, Claremont, CA, Jan. 2009

Microsoft Research, Silicon Valley, CA, Nov. 2008

Microsoft Research, Redmond, WA, Nov. 2008

University of Massachusetts, Amherst, MA, Feb. 2008

Squashing the Bugs: Tools for Building Better Software

Sigma Xi Lecture Series, Williams College, October, 2006

Practical Hybrid Type Checking

Stanford University, Stanford, CA, May 2006

Microsoft Research, Redmond, WA, May 2006

Dynamic Heap Model Extraction

University of California, Santa Cruz, Santa Cruz, CA, May 2006

Lightweight Atomicity Checking

University of California, Santa Cruz, Santa Cruz, CA, Feb. 2006

Type Inference for Race Conditions and Atomicity

University of Washington, Seattle, WA, May 2006

University of British Columbia, Vancouver, BC, May 2006

Intel, Santa Clara, CA, Nov. 2005

Automatic Synchronization Correction

Microsoft Research, Mountain View, CA, Dec. 2005

Atomicity Checkers

University of California, Santa Cruz (2 lectures), Santa Cruz, CA, Oct. 2005

Lightweight Analyses for Reliable Concurrency

Reliable Software Systems Summer School (3 lectures), Eugene, OR, July 2005

Exploiting Purity for Atomicity

New England Programming Languages Seminar, Boston, MA, Feb. 2004

Finding Bugs in Software

Bronfman Science Lunch, Williams College, Williamstown, MA, Nov. 2003

Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs

Union College, Schenectady, NY, Nov. 2007

Pomona College, Los Angeles, CA, Sept. 2005

University of Illinois at Urbana-Champaign, Urbana, IL, Aug. 2004

University of Pennsylvania, Philadelphia, PA, May 2004

University of California, Berkeley, Berkeley, CA, Dec. 2003

Stanford University, Stanford, CA, Sept. 2003

AT&T Research, Florham Park, NJ, Aug. 2003

Safe Asynchronous Exceptions for Python

HP Labs, Palo Alto, CA, May 2003

Hobbes: A Run-Time Type Checker for Binary Programs

Microsoft Research, Mountain View, CA, May 2003

Better Abstraction via Race Freedom

New England Programming Languages Seminar, Yale, CT, Aug. 2002

Detecting Race Conditions in Large Programs

Brown University, Providence, RI, June 2002

Microsoft Research, Redmond, WA, Sept. 2001

Stanford University, Stanford, CA, Aug. 2001

Type-Based Race Detection For Java

Hamilton College, NY, Feb. 2002 Williams College, Williamstown, MA, Feb. 2002 Swarthmore College, PA, Feb. 2002 Carleton College, MN, Feb. 2002 Stanford University, Stanford, CA, Jan. 2000 AT&T Research, Florham Park, NJ, Jan. 1999 IBM TJ Watson Research Center, Hawthorne, NY, Jan. 1999

Type Systems for Object-Oriented Intermediate Languages
Stanford Computer Forum Annual Meeting, Stanford, CA, June 2000
Compaq Systems Research Center, Palo Alto, CA, May 2000
Johns Hopkins University, Baltimore, MD, May 2000
Microsoft Research, Redmond, WA, April 2000
AT&T Research, Florham Park, NJ, April 2000
Lucent Technologies Bay Area Research Lab, Palo Alto, CA, April 2000

College Service

Leadership Positions

Chair, Computer Science Department, 2011–2014, 2020–2023

Chair, Committee on Academic Standing (CAS), 2019–2021, 2022–2023

Chair, Committee on Priorities and Resources (CPR), 2016–2017

Committees

Ad Hoc Financial Planning Group, 2023—present

Science Executive Committee (SEC), 2020–2023

Search Committee, Senior Associate Dean of Academic Engagement, 2021

Committee on Academic Standing (CAS), 2018–2019

Committee on Undergraduate Life (CUL), 2015–2016

Faculty Interview Committee, 2013–2014

Science Executive Committee (SEC), 2011-2014

First-Year Faculty Mentoring Program, 2009–2013, 2015–2016

Committee on Admission and Financial Aid (CAFA), 2011–2012

Advisory Group on Admission and Financial Aid (AGAFA), 2009–2011

Goldwater Fellowship Selection Committee, 2007, 2008

Committee on Priorities and Resources (CPR), 2006–2008

Honor System Committee, 2004–2005

Discipline Committee, 2004–2005

Committee on Student Course Evaluations and Pedagogy (CoSCEP), 2004–2005

Division III and Psychology Research Funds Committee, 2004–2005

Committee on Pedagogy and Its Evaluation (CoPE), 2003–2004

BIGP Advisory Committee, 2002–2008

Department of Computer Science

TA and Tutor Manager, 2004–2005, 2006–2007, 2009-2010, 2016–2017, 2018–2020

Computer Facilities Manager, 2007–2008, 2010–2011, 2018–2020, 2023

Departmental Colloquium Organizer, 2010

COSSAC and Social Events Organizer, 2009

Library Liason, 2009–2010

Web Pages and Documentation Support, 2007–2008, 2009–2010, 2011–2014, 2015–2016

Web Pages and Documentation Manager, 2004–2005, 2006–2007, 2010–2011, 2018–2019

Computer Facilities Support, 2003–2004, 2013–2014, 2015–2016