
Homework 7
Due 18 April

Handout 18
CSCI 334: Spring, 2017

What To Turn In

Please hand in work in two pieces, one for the Problems and one for the Pair Programming:

Problems: Turn in handwritten or typed answers by the due date. Be sure your work is stapled and
that your answers are clearly marked and in the correct order.

Pair Programming: This part involves writing Scala code. You are required to work with a partner on
it. You are welcome to choose your own partner, but I can also assist in matching pairs — simply
send me email and I will pair you with someone else also looking for a partner. Please do not let
finding a partner go until the last minute.
There is also an optional Squeak and Smalltalk tutorial if you would like to experiment a bit with
that language.

Reading

1. (Required) Mitchell, Chapters 10–11

2. (Required) The Scala Tutorial, available on the CS334 Links page.

3. (Optional) The Smalltalk Tutorial, available on the CS334 Handouts page.

Self Check

S1. Smalltalk Run-time Structures

Mitchell, Problem 11.4

The given conversions between Cartesian and polar coordinates work for any point (x, y), where
x ≥ 0 and y > 0. Do not worry about points where x < 0 or y ≤ 0. The figure P.11.4.1 appears on
page 332.
You should try to write reasonably accurate Smalltalk code for part (b), but you do not need to
use Squeak, although you may give it a try if you wish. A few details if you do:

• You may wish to run through the first part of the optional Squeak tutorial first to get down
the basics of writing Smalltalk code.
• Put the classes in the “My-Stuff” category you made for the tutorial, and name the classes
MyPoint and MyPolarPoint to avoid conflicts with predefined classes.
• To add Class methods, click on the “class” button to the right of the “?” button in the System

Browser. Click on the “instance” button to switch back to instance methods.
• There is a missing . at the end of the line “x ← xCoordinate” in the book.
• Use sqrt and arcTan methods for the math operations.

1

Problems

Q1. (10 points) . Removing a Method

Mitchell, Problem 11.7

Q2. (15 points) . Protocol Conformance

Mitchell, Problem 11.6

(You will find it useful to answer Problem 11.7 first before working on this one.)

Q3. (10 points) . Subtyping and Binary Methods

Mitchell, Problem 11.8

Q4. (15 points) . Delegation-Based OO Languages

Mitchell, Problem 11.9

Pair Programming

P1. (20 points) . The Happy Herd
The next few quesions ask you to implement several small programs in Scala. Start early — as
I’m sure you’ve learned this semester, new languages can be a little tricky to grasp...

Scala in Lab. The “scala” command on the Unix machines will give you a “read-eval-print” loop,
as in Lisp and ML. You can also compile and run a whole file as follows. Suppose file “A.scala”
contains:

object A {

def main(args : Array[String]) : Unit = {

println(args(0));

}

}

You can compile the program with “scalac A.scala”, and then run it (and provide command-line
arguments) with “scala A moo cow”.

Resources. I have left a number of Scala books on the bookshelf in the back corner of lab. You
may use them in lab, but please do not remove them the lab.
There is also plenty of very detailed information available online (e.g., http://www.scala-lang.org
— just web search for “Scala Language”). I suggest that you look at tutorial-style descriptions of
the features of interest as well as the Scala Language Specification for some of the specifics.
There is extensive online documentation for the Scala libraries at:

2

http://www.scala-lang.org/api/

In this first question we’ll use Scala answer a few questions about cows. Specifically the herd at
Cricket Creek Farm...

(a) First, write a program to read in and print out the data in the file “cows.txt” from the hand-
outs page. Each line contains the id, name, and daily milk production of a cow from the herd.
(I’ve also included a “cows-short.txt” file that may be useful while debugging.)
The program should be in a file called “Cows.scala” that includes a single object definition.
Recall that objects are like classes, except that only a single instance is created.
One useful snippet of code is the following line.

val lines = scala.io.Source.fromFile("cows.txt").getLines();

We will use this to read the file. Try this out in the Scala interpreter. What type does lines

have? For convenience in subsequent processing, it will be useful to convert line into a list:

val data = lines.toList;

Print out the list and verify you are successfully reading all the data. Use a for loop. For
loops in Scala follow a familiar syntax:

scala> for (i <- 1 to 3) println(i);

1

2

3

(b) Print the data again, using the foreach method on lists.
(c) The for construct lets you do many other things as well, such as selectively filtering out the

elements while iterating. For example:

scala> for (i <- 1 to 5 if i%2==0) println(i);

2

4

Use such a for list to print all cows containing “s” in their name. Make the test be case
insensitive. Scala Strings support all of the same string operations as Java Strings. A few
useful ones here and below:

def String {

def contains(str : String) : Bool

def startsWith(str : String) : Bool

def toLowerCase() : String

def toUpperCase() : String

// split breaks up a line into pieces separated by separator.

// For ex: "A,B,C".split(",") -> ["A", "B", "C"]

def split(separator : String) : Array[String]

}

(d) Now print all cows containing “s” but not “h”. Multiple if clauses can be chained together,
as in “1 to 10 if i%2==0 if i%3==0”.

(e) Scala also supports lisp comprehensions:

val list = ...;

println (for (x <- list if ...) yield f(x));

Show an example of list comprehensions by computing something about the data with one.
(You may need to look up list comprehensions in the documentation for more detail...)

(f) Next, define a new clss in “Cows.scala” to store one cow, its id, and its daily milk production.

3

class Cow(s : String) {

def id = ...

def name = ...

def milk = ...

override def toString() = {

...

}

}

It takes in a string of the form “id,name,milk” from the data file and provides the three
functions shown. For toString, you may find formatting code like “"%5d ".format(n)” handy
– it formats the number n as a string and pads it to 5 characters.
Use a map operation on data to convert it from a list of strings to a list of Cows. Print the
data and makes sure it works.

(g) Use a list comprehension to print all cows who produce more then 4 gallons of milk per day.
(h) Use the sortWith method on Lists to sort the cows by id. Also use foldLeft to tally up the

milk production for the whole herd.

class List[A] {

def sortWith (lt: (A, A) => Boolean) : List[A]

def foldLeft [B] (z: B)(f: (B, A) => B) : B

}

Note that foldLeft is a polymorphic method with type parameter B. In your case, both A and
B will be Int. Also, foldLeft is curried, so you must call it specially, as in:

val list : List[Int] = ...;

val n : Int = ...;

list.foldLeft (n) ((x: Int, elem: Int) => ...)

(i) Finally, use the maxBy and minBy methods on your list of cows to find the cows with the
highest and lowest daily milk production.

(j) Submit “Cows.scala” with turnin.

P2. (15 points) . Ahoy, World!
You’ll now learn to speak like a pirate, with the help of Scala maps and a Translator class... The
program will take in an English sentence and convert it into pirate. For example, typing in

“pardon, where is the pub?”

gives you

“avast, whar be th’ Skull & Scuppers?”

The handouts page contains a “Pirate.scala” file to start with. You will be responsible for imple-
mentating a Translator class, reading in the priate dictionary, and processing the user input. It
will be easiest to proceed in the following steps:

(a) First, complete the Translator class. It has the following signature:

class Translator {

// Add the given translation from an english word to a pirate word

def += (english : String, pirate : String) : Unit

// Look up the given english word. If it is in the dictionary, return the

// pirate equivalent. Otherwise, just return english.

def apply(english : String) : String

4

// Print the dictionary to stdout

override def toString() : String

}

Note that we’re overloading the += and () operators for Translator. Thus, you use a Trans-
lator object as follows:

val pirate = new Translator();

pirate += ("hello", "ahoy");

..

val s = pirate("hello");

If “hello” is in the dictionary, its pirate-translation is returned. Otherwise, your translator
should return the word passed in. Any non-word should also just be returned. Thus:

pirate("hello") ==> "hello"

pirate("moo") ==> "moo"

pirate(".") ==> "."

When writing apply, use the get method on map and pattern matching to handle the Option

type it returns. (See class notes / tutorial for details on Option.)
Finish the definition of Translator using a Scala map instance variable. To write toString,
you may find it handy to look at the mkString methods of the Scala Map classes.
Add a few lines to the Pirate main method to test your translator.

(b) Now, read in the full pirate dictionary from the “pirate.txt” data file, and print out the re-
sulting translator.

(c) Once you have the translator built, uncomment the lines in main that process standard input,
and process the text the user types in. There are a few sample sentences on the handouts
page. Here is an example:

Stephen-Freund:~/scala] cat sentence1.txt

pardon, where is the pub?

I’m off to the old buried treasure.

Stephen-Freund:~/scala] scala Pirate < sentence1.txt

avast, whar be th’ Skull & Scuppers?

I’m off to th’ barnacle-covered buried treasure.

(d) Submit “Pirate.scala” with turnin.

P3. (30 points) . Argh, Expressions Matey
In Scala, algebraic datatypes can be defined with the use of abstract classes and case classes.
Consider the following algebraic data type for expressions:

sealed abstract class Expr

case class Variable(name: Symbol) extends Expr

case class Constant(x: Double) extends Expr

case class Sum(l: Expr, r: Expr) extends Expr

case class Product(l: Expr, r: Expr) extends Expr

case class Power(b: Expr, e: Expr) extends Expr

This Scala code is equivalent to the following definition in ML:

data Expr =

Variable of Symbol

5

| Constant of double

| Sum of Expr * Expr

| Product of Expr * Expr

| Power of Expr * Expr

Have a look at the starter code in “Expressions.scala” to see an example of Scala-style pattern
matching on case classes.

(a) Write a function that takes the derivative of an expression with respect to a given variable.
Your function should have the following signature:

def derive(e: Expr, s: Symbol): Expr

Your function does not have to take the derivative of Powers with non-constant exponents.
It is acceptable to throw an exception in that circumstance.
Also,you’ll likely need the Chain Rule for the Power case — https://www.wyzant.com/resources/

lessons/math/calculus/differentiation/chain_rule. If your calculus is a bit rusty, you
may further restrict your code to handle only cases where the base is a variable or constant.
Note that in Scala, Symbols can be declared by using a single quote before the name of the
symbol, as such:

scala> ’x

res0: Symbol = ’x

scala> ’y

res1: Symbol = ’y

scala> ’abc

res2: Symbol = ’abc

(b) Write a function that evaluates a given expression in a given environment. An environment
is just a mapping from symbols to values for those symbols. Your function should have the
following signature:

def eval(e: Expr, env: Map[Symbol, Double]): Double

If a variable in the expression is not in the given environment, you should throw an excep-
tion.

(c) Write a function that when given an expression reduces that expression to its simplest form.
Your function should have the following signature:

def simplify(e: Expr): Expr

For example,

simplify(Sum(Variable(’x),Constant(0)))

should return Variable(’x). Your function need not be exhaustive – just implement four or
five interesting cases.

(d) Submit “Expressions.scala” with turnin.

Notes: In order to make the task of writing tests easier, we provide an expression parser. The
expression parser takes a string and returns its corresponding Expr. The expression parser can
be invoked on a string str like so: Expr(str). For example, to demonstrate that your simplifier
knows about the additive identity of zero, you might write the following test:

assertEquals(Expr("x"), simplify(Expr("x + 0")))

The syntax that the expression parser accepts can be expressed by the following grammar:

6

https://www.wyzant.com/resources/lessons/math/calculus/differentiation/chain_rule
https://www.wyzant.com/resources/lessons/math/calculus/differentiation/chain_rule

expr := sum

sum := product { ("+" | "-") product }

product := power { "*" power }

power := factor ["^" factor]

factor := "(" expr ")" | variable | constant

variable := ident constant := floatLit

floatLit := ["-"] positiveFloat

positiveFloat := numericLit ["." [numericLit]]

What To Turn In for the Programs.

• Your code for these questions should be documented — comments have the form “/* comment
*/” — and include the names of both partners at the top.
• One of each pair should include a printout of your Scala files separate from the answers to

the written problems.
• Also, one of each pair should submit electronic copies with the command “turnin -c 334

file”, where file is the name of the file you wish to submit. Be sure to submit all three files
for the Scala questions: “Dennys.scala”, “Pirate.scala”, and “Expressions.scala”.
You may submit files more than once if you find a mistake or wish to change what you
submitted the first time. Again, only one of each pair needs to submit the code.

P4. (15 points) . Smalltalk and Squeak Tutorial (Optional)
This question is optional, but using Squeak can be a pretty interesting experience if are curious.
Go through the Smalltalk “BankAccount” tutorial from the handouts page on the Unix machines
in lab. This tutorial guides you through defining and using a simple class in Squeak, and it
should hopefully give you a feel for the designers’ vision.
The goal is to experience Squeak enough to appreciate of it is all about (and to have an opinion
about it).
A great deal more about Squeak can be found at http://www.squeak.org.
Here are few important details:

(a) To run Squeak, please follow these steps:
• Squeak needs to create and store a number of large files for you. To avoid filling up the

student disk containing your home directory, please use a directory on /home/scratch

for this problem. There is already a directory on that disk with the same name as your
Unix id. Change to that directory, as in:
cd /home/scratch/09abc

• In that directory, run the following command to copy thq Squeak image file to the scratch
directory:
cp -r ~freund/share/squeak-image .

Then, run squeak:
squeak squeak-image/squeak3.9.image

Squeak will then use the “image” file in that directory. The image file contains the
environment’s code, plus any additions or modifications you have made to it. As you
go through the tutorial and before you exit, you should select “save” from the “screen
menu.” This will save any changes you made to the image on disk.
• You can run Squeak using your modified image in the future by going back to your

Squeak directory (ie, /home/scratch/09abc) and running the command squeak.

7

(b) Due to differences in the various Unix window managers installed in the lab, you may need
to:
• Use the middle mouse button (or possibly Ctrl-Click) when the tutorial refers to the right

mouse button, and
• Use the right mouse button when the tutorial asks you to Alt-Click.

(c) If you prefer, you can download and install Squeak on a Mac and PC, using the instructions
on the Squeak website.

(d) Do not worry about submitted the code for this part. Instead, include in your
written answers and brief reflection on your experience: What did you like? Not
like? Do you think Squeak is the right model for interacting with your computer? Why or
why not? A few sentences or short paragraph is sufficient.

If you want to explore Smalltalk further, I highly recommend the “Morphic” tutorial at

http://static.squeak.org/tutorials/morphic-tutorial-1.html

It gives a nice introduction to how to extend and add graphical objects, etc. to the Squeak envi-
ronment. (The wiki http://http://wiki.squeak.org/squeak has many other resources you may
also find interesting/entertaining.)

8

