
HW 10: Dataflow Analysis Foundations CSCI 434T
Spring, 2019

Overview

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

We continue to examine dataflow analysis and optimization. Last week, we saw several examples
of dataflow problems, and looked at how they could be used to optimize a program. We now take a step
back and develop a general framework in which to describe and reason about dataflow analysis. With
this framework, it is easier to reason about the correctness and precision of a particular analysis, and
to formulate new analyses. You will do both of these tasks in the following problems. The first question
picks on last week’s themes, in the context of IC TAC instructions; the next few cover the lattice theory
underlying dataflow analysis; and and the last asks you to design new dataflow analysis.

Readings

• Dragon 9.3 – 9.5.2

• Dragon 9.5.3 – 9.5.5 (Optional. A more advanced analysis- have a look at problem 9.5.1 if you do
this reading.)

Exercises

1. This question covers a few more details of basic dataflow analysis problems, in the context of IC.

(a) Describe the e gen, e kill, def, and use sets for each of the following instructions:
• t = a[i]

• b[j] = s

• x = p.g

• o.f = y

• z = q.m(r)

(b) Optimize the TAC generated for the following code snippets. You are free to use any op-
timization we have talked about, but pay particular attention to common subexpression
elimination, copy propagation, and dead code elimination.

i.
class A {

int f,g;
A moo(int z) { ... }
int f(A a) {
int v = a.f;
int w = a.g;
A b = a.moo(v);
b.f = w;
z = (a.f + b.f) * a.g;
return z;

}
}

int f(A a) {
v = a.f;
w = a.g;
b = a.moo(v)
b.f = w;
z = a.f;
t1 = b.f;
z = z + t1;
t2 = a.g;
z = z * t2;

}

1



ii.

void f(int[] b) {
int i,j,x;

...

x = b[i] + b[j];
b[j] = b[i] + b[j];
b[i] = b[i] + b[j];

}

t1 = b[i];
t2 = b[j];
x = t1 + t2;

t3 = b[i];
t4 = b[j];
t5 = t3 + t4;
b[j] = t5;

t6 = b[i];
t7 = b[j];
t8 = t6 + t7;
b[i] = t8;

2. Given P = {red,blue, yellow,purple, orange, green}, let us define the partial order v as follows:

red v purple

blue v purple

yellow v orange

red v orange

blue v green

yellow v green

p v p for all p ∈ P

(a) Draw the diagram (as in Dragon Figure 9.22) for P .
(b) Would we still have a partial order if I added purple v yellow and purple v green? Why or

why not? Would we still have a partial order if I added those edges and also yellow v red?
Why or why not?

(c) Now add two additional colors to P :

white v p where p ∈ {red,blue, yellow}
p v black where p ∈ {purple, orange, green}

i. The resulting structure is a semi-lattice. Draw it.
ii. Compute all lower bounds for {black,purple, orange}.

iii. Compute the greatest lower bound for {black,purple, orange}.
iv. Which of the following functions fi : P → P are monotone?

• f1(p) =
{

white if p ∈ {red,blue, yellow}
p otherwise

• f2(p) =
{

yellow if p ∈ {red,blue, green}
p otherwise

• f3(p) =
{

orange if p contains the letter a
blue otherwise

3. (a) Draw the product of the following two lattices L and N :

A

B C

D

0

1

2

2



(b) Suppose V is the set of all subsequences of “moo” ({ moo, mo, oo, m, o, ε }) and let x ∧ y be
the longest common subsequence of x and y. Draw the lattice for V . Consider the function
f : V → V , where f(x) is x with all o’s removed. Is f distributive? Justify in one or two
sentences.

4. Dragon 9.3.3

5. Design an optimization to remove redundant run-time null pointer checks from IC programs.
For simplicity, you may assume that each basic block contains a single TAC instruction. Specifi-
cally:

(a) Design a dataflow analysis by describing the following:
• The direction D (forward/backward) of your analysis.
• The domain V of data flow values.
• The meet operation ∧. Describe the order ≤ induced on V by your meet operator.
• The set of transfer functions F , where fI ∈ F is the transfer function for TAC instruction

I. You only need to consider the following forms: x = y, x = new C(), check null x,
and x = null.

• v, the initial value for either OUT[ENTER] or IN[EXIT], depending on whether your
analysis is forward or backward.

You may wish to use Figure 9.21 as a guide.
(b) Is your framework monotone? Explain why. Is your framework distributive? Explain.
(c) Describe how to use the results of your dataflow analysis to optimize a program. (One sen-

tence should be sufficient)
(d) Show the results of applying the analysis and optimization to the following:

y = new Object();
check null y;
z = w;
while (...) {

check null y;
check null z;

}
if (...) {

y = k;
check null y;
check null z;

}
check null y;
x = y;
check null x;

(e) In Dragon, page 629, the authors claim that for a lattice-theoretic partial order ≤:
• Any answer greater than IDEAL is incorrect.
• Any answer smaller than or equal than IDEAL is conservative, i.e. safe.

Explain in one or two sentences why your analysis never yields incorrect results. Is your
analysis strictly conservative in the sense that it sometimes computes answers strictly smaller
than IDEAL? If not, explain why in one or two sentences. If it is strictly conservative, write
a short program for which your analysis computes a different value than IDEAL. What are
the consequences of being conservative in this case?

3


