
> 1

Martin Odersky, FOSDEM 2009

A	 Scalable	 Language	

Martin Odersky
FOSDEM 2009

Martin Odersky, FOSDEM 2009

2

The software landscape today …

… resembles a tower of Babel with
many little (or not so little) languages
playing together.
E.g.
>  JavaScript on the client
>  Perl/Python/Ruby/Groovy for server

side scripting
>  JavaFX for the UI
>  Java for the business logic
>  SQL for database access
all cobbled together with a
generous helping of XML.

Martin Odersky, FOSDEM 2009

3

This is both good and bad

Good: Every language can concentrate on what it’s best at.

Bad: Cross language communication:
 complicated, fragile, source of misunderstandings.

Problematic: Cross language communication is controlled by a common
type system (neither static nor dynamic).

 It's based on low-level representations such as XML trees or (worse)
strings (as in JDBC database queries).

Martin Odersky, FOSDEM 2009

4

Alternative: Scalable languages

A language is scalable if it is suitable for very small as well as very large
programs.

A single language for extension scripts and the heavy lifting.

Application-specific needs are handled through libraries and embedded
DSL's instead of external languages.

Scala shows that this is possible.

> 2

Martin Odersky, FOSDEM 2009

5

Scala is a scripting language

It has an interactive read-eval-print-loop (REPL).
Types can be inferred.
Boilerplate is scrapped.

scala> var capital = Map("US" → "Washington", "France" → "Paris")

capital: Map[String, String] = Map(US → Washington, France → Paris)

scala> capital += ("Japan" → "Tokio")

scala> capital("France")

res7: String = Paris

Martin Odersky, FOSDEM 2009

6

Scala is the Java of the future
It has basically everything Java has now.
(sometimes in different form)
It has closures.
(proposed for Java 7, but rejected)
It has traits and pattern matching.
(I would not be surprised to see them in Java 8, 9 or 10)
It compiles to .class files, is completely interoperable and runs about as fast as
Java

object App {
 def main(args: Array[String]) {
 if (args exists (_.toLowerCase == "-help"))
 printUsage()
 else
 process(args)
 }
}

Martin Odersky, FOSDEM 2009

7

Interoperability

Scala fits seamlessly into a Java environment
Can call Java methods, select Java fields, inherit Java classes, implement
Java interfaces, etc.
None of this requires glue code or interface descriptions
Java code can also easily call into Scala code
Scala code resembling Java is translated into virtually the same
bytecodes.
 ⇒ Performance is usually on a par with Java

Martin Odersky, FOSDEM 2009

8

Scala is a composition language

New approach to module
systems:
component = class or trait
composition via mixins
Abstraction through
>  parameters,
>  abstract members (both types

and values),
>  self types
gives dependency injection for
free

trait Analyzer { this: Backend =>
 …
}

trait Backend extends Analyzer
 with Optimization
 with Generation {

 val global: Main
 import global._

 type OutputMedium <: Writable

}

> 3

Martin Odersky, FOSDEM 2009

9

Is Scala a “kitchen-sink language”?

Not at all. In terms of feature count, Scala is roughly comparable to
today’s Java and smaller than C# or C++.
But Scala is deep, where other languages are broad.
Two principles:

 1. Focus on abstraction and composition, so that users can implement
their own specialized features as needed.

 2. Have the same sort of constructs work for very small as well as very
large programs.

Martin Odersky, FOSDEM 2009

10

Scala compared to Java

Scala adds Scala removes
+ a pure object system - static members
+ operator overloading - primitive types
+ closures - break, continue
+ mixin composition with traits - special treatment of interfaces
+ existential types - wildcards
+ abstract types -  raw types
+ pattern matching -  enums

Modeled in libraries:
 assert, enums, properties, events, actors, using, queries, …

Martin Odersky, FOSDEM 2009

11

Scala cheat sheet (1): Definitions

Scala method definitions:

def fun(x: Int): Int = {
 result
}

def fun = result

Scala variable definitions:

var x: Int = expression
val x: String = expression

Java method definition:

int fun(int x) {
 return result
}

(no parameterless methods)

Java variable definitions:

int x = expression
final String x = expression

Martin Odersky, FOSDEM 2009

12

Scala cheat sheet (2): Expressions

Scala method calls:

obj.meth(arg)
obj meth arg

Scala choice expressions:

if (cond) expr1 else expr2

expr match {
 case pat1 => expr1
 case patn => exprn
}

Java method call:

obj.meth(arg)
(no operator overloading)

Java choice expressions, stmts:

cond ? expr1 : expr2
if (cond) return expr1;
else return expr2;

switch (expr) {
 case pat1 : return expr1; ...
 case patn : return exprn ;
} // statement only

> 4

Martin Odersky, FOSDEM 2009

13

Scala cheat sheet (3): Objects and Classes

Scala Class and Object

class Sample(x: Int, val p: Int) {
 def instMeth(y: Int) = x + y
}

object Sample {
 def staticMeth(x: Int, y: Int) =
 x * y
}

Java Class with statics

class Sample {
 private final int x;
 public final int p;
 Sample(int x, int p) {
 this.x = x;
 this.p = p;
 }
 int instMeth(int y) {
 return x + y;
 }
 static int staticMeth(int x, int y) {
 return x * y;
 }
}

Martin Odersky, FOSDEM 2009

14

Scala cheat sheet (4): Traits

Scala Trait

trait T {
 def abstractMth(x: String): Int
 def concreteMth(x: String) =
 x + field
 var field = “!”
}

Scala mixin composition:

class C extends Super with T

Java Interface

interface T {
 int abstractMth(String x)
}

(no concrete methods)
(no fields)

Java extension + implementation:

class C extends Super implements T

Martin Odersky, FOSDEM 2009

15

Spring Cleaning

 Scala’s syntax is
lightweight and concise.
Due to:
>  semicolon inference,
>  type inference,
>  lightweight classes,
>  extensible API’s,
>  closures as

control abstractions.
Average reduction in LOC: ≥ 2

 due to concise syntax and better abstraction capabilities

 Scala feels like a cleaned up Java …

var capital = Map("US" -> "Washington",

 "Canada" -> "ottawa")

capital += ("Japan" -> "Tokyo")

for (c <- capital.keys)

 capital(c) = capital(c).capitalize

assert(capital("Canada") == "Ottawa")

Martin Odersky, FOSDEM 2009

16

… with one major difference

It's x: Int instead of int x

Why the change?

Works better with type inference:

 var x = 0 instead of x = 0 // that's not a definition!

Works better for large type expressions:

 val x: HashMap[String, (String, List[Char])] = …

 instead of

 public final HashMap<String, Pair<String, List<Char>>> x =
…

> 5

Martin Odersky, FOSDEM 2009

17

Scalability demands extensibility

Take numeric data types
Today's languages support int, long, float, double.
Should they also support BigInt, BigDecimal, Complex, Rational, Interval,
Polynomial?
There are good reasons for each of these types
But a language combining them all would be too complex.

Better alternative: Let users grow their language according to their needs.

Martin Odersky, FOSDEM 2009

18

Adding new datatypes - seamlessly

For instance type BigInt:

def factorial(x: BigInt): BigInt =
 if (x == 0) 1 else x * factorial(x - 1)

Compare with using Java's class:

import java.math.BigInteger
def factorial(x: BigInteger): BigInteger =
 if (x == BigInteger.ZERO)
 BigInteger.ONE
 else
 x.multiply(factorial(x.subtract(BigInteger.ONE)))
}

Martin Odersky, FOSDEM 2009

19

Implementing new datatypes - seamlessly

Here's how BigInt is implemented

import java.math.BigInteger

class BigInt(val bigInteger: BigInteger)
extends java.lang.Number {

 def + (that: BigInt) =
 new BigInt(this.bigInteger add that.bigInteger)

 def - (that: BigInt) =
 new BigInt(this.bigInteger subtract that.bigInteger)

 … // other methods implemented analogously
}

+ is an identifier; can be used as a
method name

Infix operations are method calls:
a + b is the same as a.+(b)

a add b is the same as a.add(b) 

Martin Odersky, FOSDEM 2009

20

Adding new control structures

For instance using for resource control
(proposed for Java 7)

Instead of:

 using (new BufferedReader(new FileReader(path))) {
 f => println(f.readLine())
}

val f = new BufferedReader(new FileReader(path))
try {
 println(f.readLine())
} finally {
 if (f != null) f.close()
}

> 6

Martin Odersky, FOSDEM 2009

21

Implementing new control structures:

Here's how one would go about implementing using:

def using[T <: { def close() }]
 (resource: T)
 (block: T => Unit) {
 try {
 block(resource)
 } finally {
 if (resource != null) resource.close()
 }
}

T is a type parameter... … supporting a close method

A closure that takes a T parameter

Martin Odersky, FOSDEM 2009

22

Break and continue

Scala does not have them. Why?
>  They are a bit imperative; better use many smaller functions.
>  Issues how to interact with closures.
>  They are not needed!
We can support them purely in the libraries.

import scala.util.control.Breaks._
breakable {
 for (x <- elems) {
 println(x * 2)
 if (x > 0) break
 }
}

Martin Odersky, FOSDEM 2009

23

Getting back break and continue

Martin Odersky, FOSDEM 2009

24

What makes Scala scalable?

Many factors: strong typing, inference, little boilerplate,…
But mainly, its tight integration of functional and object-oriented
programming

Functional programming:

Makes it easy to build interesting
things from simple parts, using

 higher-order functions,

 algebraic types and
 pattern matching,

 parametric polymorphism.

Object-oriented programming:

Makes it easy to adapt and extend
complex systems, using

 subtyping and inheritance,

 dynamic configurations,

 classes as partial
abstractions.

> 7

Martin Odersky, FOSDEM 2009

25

Scala is object-oriented

Every value is an object
Every operation is a method call
Exceptions to these rules in Java (such as primitive types, statics) are
eliminated.

scala> (1).hashCode
res8: Int = 1

scala> (1).+(2)
res10: Int = 3

Martin Odersky, FOSDEM 2009

26

Scala is functional

Scala is a functional language, in the sense that every function
is a value.
Functions can be anonymous, curried, nested.
Many useful higher-order functions are implemented as
methods of Scala classes. E.g:

scala> val matrix = Array(Array(1, 0, 0),
 | Array(0, 1, 0),
 | Array(0, 0, 1))

matrix: Array[Array[Int]] = Array([I@164da25,…

scala> matrix.exists(row => row.forall(0 ==))
res13: Boolean = false

Martin Odersky, FOSDEM 2009

27

Functions are objects

If functions are values, and values are
objects, it follows that functions
themselves are objects.

The function type S => T is equivalent
to scala.Function1[S, T], where
Function1 is defined as follows:

So functions are interpreted as
objects with apply methods.

For example, the anonymous
successor function

 (x: Int) => x + 1
is expanded to:

trait Function1[-S, +T] {
 def apply(x: S): T
}

new Function1[Int, Int] {
 def apply(x: Int) =
 x + 1
}

Martin Odersky, FOSDEM 2009

28

Why should I care?

Since (=>) is a class, it can be
subclassed.
So one can specialize the
concept of a function.
An obvious use is for arrays,
which are mutable functions over
integer ranges.
A bit of syntactic sugaring lets
one write:
a(i) = a(i) + 2 for
a.update(i, a.apply(i) + 2)

class Array [T] (l: Int)
extends (Int => T) {

 def length: Int = l

 def apply(i: Int): T = …

 def update(i: Int, x: T):Unit

 def elements: Iterator[T]

 def exists(p: T => Boolean)

 …

}

> 8

Martin Odersky, FOSDEM 2009

29

Partial functions

Another useful abstraction are
partial functions.
These are functions that are
defined only in some part of
their domain.
What's more, one can inquire
with the isDefinedAt method
whether a partial function is
defined for a given value.

Scala treats blocks of pattern
matching cases as instances of
partial functions.
This lets one write control
structures that are not easily
expressible otherwise.

trait PartialFunction[-A, +B]
extends (A => B) {

 def isDefinedAt(x: A):Boolean

}

Martin Odersky, FOSDEM 2009

30

Developing new paradigms

Scala's flexibility makes it possible for users to grow the language into
completely new paradigms.
Case in point: concurrent programming
Since Scala is interoperable, Java threads and concurrent libraries are
available.
But it's also possible to explore completely new paradigms.

Martin Odersky, FOSDEM 2009

31

Erlang-style actors

Two principal constructs (adopted
from Erlang):
Send (!) is asynchronous;
messages are buffered in an
actor's mailbox.
receive picks the first message in
the mailbox which matches any of
the patterns msgpati.
If no pattern matches, the actor
suspends.

 // asynchronous message send

actor ! message

// message receive

receive {

 case msgpat1 => action1

 …

 case msgpatn => actionn

}

A pattern matching block of type
PartialFunction[MessageType, ActionType]

Martin Odersky, FOSDEM 2009

32

A simple actor

case class Data(bytes: Array[Byte])
case class Sum(receiver: Actor)
val checkSumCalculator =
 actor {
 var sum = 0
 loop {
 receive {
 case Data(bs) => sum += hash(bs)
 case Sum(receiver) => receiver ! sum
 }
 }
 }
}

repeatedly receive messages

Spawn a new actor

> 9

Martin Odersky, FOSDEM 2009

33

Implementing receive

Using partial functions, it is straightforward to implement receive:

Here,
 self designates the currently executing actor,
 mailBox is its queue of pending messages, and
 extractFirst extracts first queue element matching given predicate.

def receive [T] (f: PartialFunction[Message, T]): T = {
 self.mailBox.extractFirst(f.isDefinedAt)

 match {

 case Some(msg) =>

 f(msg)

 case None =>

 self.wait(messageSent)

 }}

Martin Odersky, FOSDEM 2009

34

Other Approaches to Scalability

C++
>  Hard to scale down.
>  Scaling up is possible for expert users.
.NET
>  Many languages with common interoperability.
>  Hard to do something that's really different.
Java
>  Lingua franca makes it easy to understand other people's code.
>  Not easy to scale down or up pressure to add new languages.

Martin Odersky, FOSDEM 2009

35

Where are we now?

Scala
>  Easy to scale down and up.
>  Works well with a mix of expert users (for the framework) and non-

experts (for the application code).
Scala solves the expressiveness challenge for doing this.
But does it also solve the safety issues?
>  Problem: How to ensure that domain-specific code stays within its

domain-specific library/language?
>  For instance: How to ensure that a query formulated in Scala is non-

recursive?
Addressed by ongoing project: Pluggable type systems

Martin Odersky, FOSDEM 2009

36

The Scala community

50000 downloads in 2008
300+ trak contributors
20+ messages/day on the mailing lists
Industrial adoption has started, among
others at:

 Twitter, Sony Pictures, Nature.com,
 Reaktor, Mimesis Republic,
 EDF Trading, …

Scala LiftOff conference, May 2008.
Scala talks in many conferences; next two
at QCon, London, March 10-12.

> 10

Martin Odersky, FOSDEM 2009

37

Tool support

>  Standalone compiler: scalac
>  Fast background compiler: fsc
>  Interactive interpreter shell and

script runner: scala
>  Web framework: lift
>  Testing frameworks:

 Specs, ScalaCheck, ScalaTest,
SUnit, …

IDE plugins for:
>  Eclipse (supported by EDF)
>  IntelliJ (supported by JetBrains)
>  Netbeans (supported by Sun)

Martin Odersky, FOSDEM 2009

38

Tool support

>  Standalone compiler: scalac
>  Fast background compiler: fsc
>  Interactive interpreter shell and

script runner: scala
>  Web framework: lift
>  Testing frameworks:

 Specs, ScalaCheck, ScalaTest,
SUnit, …

IDE plugins for:
>  Eclipse (supported by EDF)
>  IntelliJ (supported by JetBrains)
>  Netbeans (supported by Sun)

Martin Odersky, FOSDEM 2009

39

Who’s using it?

Open source projects:
 lift
 wicket
 NetLogo
 SPDE: Scala branch for Processing
 Isabelle: GUI and code extractor

Companies:
 Twitter: infrastructure
 Sony Pictures: middleware
 Nature.com: infrastructure
 SAP community: ESME company messaging
 Reaktor: many different projects
 Mimesis Republic: multiplayer games
 EDF: trading, …

Martin Odersky, FOSDEM 2009

40

Learning Scala

To get started:
First steps in Scala, by Bill Venners
published in Scalazine at www.artima.com

Scala for Java Refugees by Daniel Spiewack
(great blog series)

To continue:
Programming in Scala, by Odersky, Spoon,
Venners, published by Artima,com

Other books are in the pipeline.

> 11

Martin Odersky, FOSDEM 2009

41

Thank You
To try it out:

scala-lang.org

Thanks also to the (past and present) members of the Scala team:

Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubochet,
Burak Emir, Sebastian Hack, Philipp Haller, Sean McDirmid, Ingo
Meier, Adriaan Moors, Stéphane Micheloud, Nikolay Mihaylov,
Anders Nielssen, Tiark Rompf, Lukas Rytz, Michel Schinz, Lex
Spoon, Erik Stenman, Geoffrey Alan Washburn, Matthias Zenger.

Martin Odersky, FOSDEM 2009

42

Relationship between Scala and other languages

Main influences on the Scala design: Java, C# for their syntax, basic types, and class
libraries,
Smalltalk for its uniform object model,
Eiffel for its uniform access principle,
Beta for systematic nesting,
ML, Haskell for many of the functional aspects.
OCaml, OHaskel, PLT-Scheme, as other (less tightly integrated) combinations of FP and
OOP.
Pizza, Multi Java, Nice as other extensions of the Java platform with functional ideas.
(Too many influences in details to list them all)
Scala also seems to influence other new language designs, see for instance the closures
and comprehensions in LINQ/C# 3.0.

