
1

1

ML

CSCI 334
Stephen Freund

2

Language History

Algol 60

Algol 68

Pascal

ML Modula

Lisp

3

Algol 60
real procedure average(A,n);
real array A; integer n;
begin

real sum;
sum := 0;
for i = 1 step 1 until n do
sum := sum + A[i];

average := sum/n
end;

4

ML

� Combination of Lisp and Algol-like features

� Expression-oriented
� Higher-order functions
� Garbage collection

� Static types
� Abstract data types
� Module system
� Exceptions

5

Goals in study of ML

� Types, type checking, polymorphism

� Memory management

� Control Structures

6

Robin Milner and ML's Origins
� Dana Scott, 1969

– LCF
– logic for stating theorems about

programs

� Robin Milner
– automated theorem proving for

LCF
– Hard search problem
– Incomplete: may not find proof
– ML: meta-language for writing

programs (tactics) to find proofs

Dafny Example

https://rise4fun.com/Dafny/yAOyh?frame=1&menu=0&course=1

2

7

Tactics
�Tactics guide search in theorem prover

– "Try induction to prove T"
– "Assume X and derive contradiction"
– "Try A and then B"

�Tactic is partial function from formula -> proof
– finds proof
– never terminates
– reports an error

8

Language Ideas to Support Tactics
�Type system

– guarantees correctness of generated proof

�Exception handling
– deals with tactics that fail (Turing Award)

�Higher-order functions
– composition of tactics
– fun compose(t1, t2) =

lformula. if t1(formula) then ...
else if t2(formula) ...

9

Running ML
�Type sml on Unix machines
�System will give you prompt
�Enter expression or declarations to evaluate:

- 3 + 5;
val it = 8 : int
- it * 2;
val it = 16 : int
- val six = 3 + 3;
val six = 6 : int

�Or "sml < file.ml"
10

Defining Functions
�Example

- fun succ x = x + 1;
val succ = fn : int -> int
- succ 12;
val it = 13 : int
- 17 * (succ 3);

val it = 68 : int;

�Or:
- val succ = fn x => x + 1;
val succ = fn : int -> int

No type info
given- compiler

infers it

11

Recursion
�All functions written using recursion and

if.. then.. else (and patterns):
- fun fact n =

if n = 0 then 1 else n * fact (n-1);

� if..then..else is an expression:
- if 3<4 then "moo" else "cow";

val it = "moo" : string

- types of branches must match

12

Local Declarations
- fun cylinderVolume diameter height =

let val radius = diameter / 2.0;
fun square y = y * y

in
3.14 * square(radius) * height

end;

val cylinderVolume = fn : real -> real -> real

- cylinderVolume 6.0 6.0;
val it = 169.56 : real

3

13

Built-in Data Types
� unit

– only value is ()
� bool

– true, false

– operators not, andalso, orelse
� int

– ..., ~2, ~1, 0, 1, 2, ...
– +,-,*,div,mod,abs
– =,<,<=, etc.

14

Built-in Data Types
� real

– 3.17, 2.2, ...
– +, -, *, /

– <, <=, etc.
– no conversions from int to real: 2 + 3.3 is bad
– no equality (test that -0.001 < x-y < 0.001, etc.)

� strings
– "moo"
– "moo" ^ "cow"

15

Overloaded Operators
� +,-,etc. defined on both int and real
�Which one to use depends on operands:

- fun succ x = x + 1

val succ = fn : int -> int

- fun double x = x * 2.0

val double = fn : real -> real

- fun double x = x + x

val double = fn : int -> int
16

Type Declarations
� Can add types when type inference does not work

- fun double (x:real) = x + x;

val double = fn : real -> real

- fun double (x:real) : real = x + x;

val double = fn : real -> real

17

Compound Types
�Tuples, Records, Lists
�Tuples

(14, "moo", true): int * string * bool

� Functions can take tuple argument
- fun power (exp,base) =

if exp = 0 then 1
else base * power(exp-1,base);

val power = fn : int * int -> int

- power(3,2);
18

Curried Functions (named after Curry)
� Previous power

- fun power (exp,base) =
if exp = 0 then 1

else base * power(exp-1,base);

val power = fn : int * int -> int

� Curried power function
- fun cpower exp =

fn base =>
if exp = 0 then 1

else base * cpower (exp-1) base;

val cpower = fn : int -> (int -> int)

4

19

Curried Functions (named after Curry)
� Previous power

- fun power (exp,base) =
if exp = 0 then 1

else base * power(exp-1,base);

val power = fn : int * int -> int

� Curried power function
- fun cpower exp base =

if exp = 0 then 1
else base * cpower (exp-1) base;

val cpower = fn : int -> (int -> int)
20

Curried Functions
�Why is this useful?

- fun cpower exp base =
if exp = 0 then 1

else base * cpower (exp-1) base;

val cpower = fn : int -> (int -> int)

� Can define
- val square = cpower 2

val square = fn : int -> int

- square 3;

val it = 9 : int

21

Records
� Like tuple, but with labeled elements:

{ name="Gus", salary=3.33, id=11 }:
{ name:string, salary:real, id:int };

�Selector operator:
- val x =

{ name="Gus", salary=3.33, id=11 };

- #salary(x);

val it = 3.33 : real

- #name(x);

val it = "Gus" : string

22

Lists
�Examples

– [1, 2, 3, 4], ["wombat", "numbat"]
– nil is empty list (sometimes written [])
– all elements must be same type

�Operations
– length length [1,2,3] Þ 3

– @ - append [1,2]@[3,4] Þ [1, 2, 3, 4]

– :: - prefix 1::[2,3] Þ [1, 2, 3]

– map map succ [1,2,3] Þ [2,3,4]

23

Lists
� Functions on Lists

- fun product (nums) =

if (nums = nil)

then 1

else (hd nums) * product(tl nums);

val product = fn : int list -> int

- product([5, 2, 3]);

val it = 30 : int; 24

Pattern Matching
� List is one of two things:

– nil
– "first elem" :: "rest of elems"
– [1, 2, 3] = 1::[2,3] = 1::2::[3] = 1::2::3::nil

� Can define function by cases

fun product (nil) = 1

| product (x::xs) = x * product (xs);

5

25

Patterns on Integers
� Patterns on integers

fun listInts 0 = [0]

| listInts n = n::listInts(n-1);

listInts 3 Þ [3, 2, 1, 0];

�More on patterns for other data types next time

26

Many Types Of Lists
� 1::2::nil : int list
"wombat"::"numbat"::nil : string list

�What type of list is nil?
- nil;

val it = [] : 'a list

� Polymorphic type
– 'a is a type variable that represents any type
– 1::nil : int list
"a"::nil : string list

27

The Length Function
�Another Example

fun length (nil) = 0

| length (x::xs) = 1 + length (xs);

�What is the type of length?
�How about this one:

fun id x = x;

28

Polymorphism

fun length (nil) = 0

| length (x::xs) = 1 + length (xs);

- val it = fun 'a list -> int

fun id x = x;

- val it = fun 'a -> 'a
Type variable
represents
any type

29

Patterns and Other Declarations
� Patterns can be used in place of variables
�Most basic pattern form

– val <pattern> = <exp>;

�Examples
– val x = 3;

– val tuple = ("moo", "cow");

– val (x,y) = tuple;

– val myList = [1, 2, 3];
– val w::rest = myList;

– val v::_ = myList;
30

Datatype
public static final int NORTH = 1;
public static final int SOUTH = 2;
public static final int EAST = 3;
public static final int WEST = 4;

public move(int x, int y, int dir) {
switch (dir) {
case NORTH: ...
case ...

}
}

6

31

Datatype
datatype Direction =

NORTH | SOUTH | EAST | WEST;

fun move((x,y),NORTH) = (x,y-1)
| move((x,y),SOUTH) = (x,y+1)
...
;

