
1

CS	326
Testing

Stephen	 Freund

1

The	Blue	Screen	of	Death

2

USS	
Yorktown

• Smart	 Ship
– 27	PCs
– Windows	NT	4.0	

• September	 21,	1997:
– data	entry	error	caused	a	"Divide-By-0"	error	
– entire	system	failed
– ship	dead	in	the	water	for	over	2	hours

[Wired	1997]

Ariane 5	Rocket

June	4,	1996
$800	million	software	failure

Mars	Climate	Orbiter

Purpose: Collect	data.	 	Relay	
signals	 from	Mars	Polar	Lander	
($165M)

Failure: Smashed	 into	 Mars	
(1999)

Bug: Failed	 to	convert	English	
to	metric	units

Mars	Polar	Lander

Purpose: Lander	 to	study	 the	Mars	 climate	
($120M)

Failure: Smashed	 into	 Mars	 (2000)

Bug: Spurious	 signals	
from	sensors	 caused	
premature	engine	
shutoff

North	East	Power	Failure

Failure: Power	 grid	 failed	across	much	of	the	
North	East. 	$6B	 losses	 (2001)

Bug: Timing	
bug	 in	alarm	
system	 in	Ohio	
power	 plant

Online	Trading	Software

Purpose: automatic	high-frequency	 trading

Failure: DOW	drops	 9.2%,	equity	markets	 	collapse	
(2010)

Bug: Bad	modeling,
and	no	 fail-stops	
to	prevent
flooding	 market
with	 sell	orders

well,	not	really...
USS	Vincennes

Failure: Shot	down	 an	
Airbus	 jet	 that	was	
mistaken	 for	a	F-14.		290	
people	 died.	 (1988)

Bug: tracking	software	
displayed	 cryptic	and	
misleading	 output

Therac25	Radiation	Therapy

Purpose: Computer-controlled	
radiation	 therapy	machine

Failure: gave	fatal	radiation	
doses	 to	2	cancer	patients	
(1986)

Bug: timing	bug

Patriot	Missile

Purpose: Intercept	
incoming	missiles

Failure: missed	 SCUD	missile	 that	killed	 28	US	
soldiers	 (1991)

Bug: incorrect	calculation	of	distance	 to	 target

Heartbleed SSL	Attack

Purpose:	 OpenSSL is	 widely-
used	cryptographic	 library.

Failure: Library	could	 leak	
secret	 information,	 including	
keys.	(2014)

Bug: Buffer	overrun

3

More	Examples
• Mariner	I	space	probe	(1962)
• Microsoft	Zune	New	Year’s	Eve	crash	(2008)
• iPhone	alarm	(2011)
• Denver	Airport	baggage-handling	system	(1994)
• Air-Traffic	Control	System	in	LA	Airport	(2004)
• AT&T	network	outage	(1990)
• Northeast	blackout	(2003)
• USS	Yorktown	Incapacitated	(1997)
• Intel	Pentium	floating	point	divide	(1993)
• Excel:	65,535	displays	as	100,000	(2007)
• Prius	brakes	and	engine	stalling	(2005)
• Soviet	gas	pipeline	(1982)
• Study	linking	national	debt	to	slow	growth	(2010)
• Iowa	Democratic	Caucuses	(2020)
• Boeing	Starliner	Craft	(2020)

Software	Bugs	Cost	Money
• 2013	Cambridge	University	study:	Software	
bugs	cost	global	economy	$312	Billion	per	year
– http://www.prweb.com/releases/2013/1/prweb10298185.htm

• 2012	High-Frequency	Trading	Error:	$440	million	
loss	by	Knight	Capital	Group	 in	30	minutes

• 2017	Ethereum bug:	$300M	 in	crypto-currency

• 2003	NE	power	blackout:	$6	Billon	loss

Quality	Software

• External
– Correctness Does	it	do	what	it	supposed	to	do?
– Reliability Does	it	do	it	accurately	all	the	time?
– Efficiency Does	it	do	without	excessive	resources?
– Integrity Is	it	secure?

• Internal
– Portability Can	I	use	it	under	different	conditions?
– Maintainability	 Can	I	fix	it?
– Flexibility Can	I	change	it	or	extend	it	or	reuse	it?

• Quality	Assurance	(QA)
– Process	of	uncovering	problems	and	improving	software	quality
– Testing	is	a	major	part	of	QA

Software	Quality	Assurance	(QA)

Testing

Static
Analysis

Correctness
Proofs

Code
Reviews

Software
Processes

No	silver	bullet:	
“Beware	of	bugs	in	the	above	
code;	I	have	only	proved	it	correct,	
not	tried	it.”

-Donald		Knuth

“Program	testing	can	be	used	to	
show	the	presence	of	bugs,	but	
never	to	show	their	absence!”

Edsgar Dijkstra

4

A	Bug’s	Life

Defect:	
Mistake

Committed	
By	Human

Error:
Incorrect	

Computation

Failure:
Visible	Error:

Program	Violates
Specification

• Testing:	Systematically	trigger	failures.
• Debugging:Map	failure	back	to	defect.

Design	Space	for	Tests

• Unit testing	versus	system/integration	testing

• Black-box	testing versus	clear-box	testing

• Specification testing versus	implementation
testing

What's	the	Big	Deal?

/// -Returns: approximation to square root of x, or
/// nil if x < 0
public func sqrt(x: Double) -> Double?

/// **Requires**: 0 <= x,y,z <= 10,000
///
/// -Returns: f(x,y,z) for some complicated f
public func compute(x:Int, y:Int, z:Int) -> Int

Partition	the	Input	Space

• Ideal	test	suite:	
– Identify	sets	with	same	behavior
– Try	one	input	from	each	set

• Two	problems:
– Notion	of	same	behavior	is	subtle
– Discovering	the	sets	requires	perfect	knowledge

5

Naive	Approach:	Execution	
Equivalence

All	x	<	0	are	execution	equivalent:
Program	takes	same	sequence	of	
steps	for	any	x	<	0

All	x	≥	0	are	execution	equivalent

Suggests	that	{-3,	3},	for	example,	is	a	
good	test	suite

/// -Returns: x < 0 ⇒ returns –x
/// otherwise ⇒ returns x
func abs(x : Int) -> Int {

if (x < 0) {

return -x
} else {
return x

}
}

/// -Returns: x < 0 ⇒ returns –x
/// otherwise ⇒ returns x
func abs(x : Int) -> Int {

if (x < -2) {

return -x
} else {
return x

}
}

All	x	<	0	are	execution	equivalent:
Program	takes	same	sequence	of	
steps	for	any	x	<	0

All	x	≥	0	are	execution	equivalent

Suggests	that	{-3,	3},	for	example,	is	a	
good	test	suite

-3			-2			-1					0						1					2						3

✓✘ ✘ ✓✓ ✓✓

-4	

✓

Naive	Approach:	Execution	
Equivalence

Better:		Revealing	
Subdomains

• A	subdomain is	a	subset	of	possible	inputs
• A	subdomain	is	revealing for	error	E	if	either:
– Every	input	in	that	subdomain	triggers	error	E,	or
– No	input	in	that	subdomain	triggers	error	E

• Test	only	one	 input	from	a	given	subdomain
– If	subdomains	cover	the	entire	input	space,	we	are	
guaranteed		to	detect	the	error	if	it	is	present

• The	trick	is	to	guess	these	revealing	subdomains

Revealing	Subdomains	(Clear	Box)

All	x	<	0	are	execution	equivalent:
Program	takes	same	sequence	of	
steps	for	any	x	<	0

All	x	≥	0	are	execution	equivalent

Suggests	that	{-3,	3},	for	example,	is	a	
good	test	suite

-3			-2			-1					0						1					2						3

✓✘ ✘ ✓✓ ✓✓

-4	

✓

/// -Returns: x < 0 ⇒ returns –x
/// otherwise ⇒ returns x
func abs(x : Int) -> Int {

if (x < -2) {
return -x

} else {
return x

}
}

6

Heuristics	for	Designing	Test	Suites

• Good	heuristics:
– Few	subdomains
– " errors	in	some	class	of	errors	E,	
High	probability	that	some	subdomain	is	revealing	
for	E	and	triggers	E

• Different	heuristics	target	different	classes	of	
errors
– In	practice,	combine	multiple	heuristics	
– Really	a	way	to	think	about	and	communicate	your	
test	choices

Heuristic:	Black-Box	Testing

• Heuristic:	Explore	alternate	cases	in	spec

// - Returns: a > b ⇒ returns 1
// a < b ⇒ returns -1
// a = b ⇒ returns 0
func compare(a : Int, b : Int) -> Int

/// - Returns: the smallest i such
/// that a[i] == value,
/// or nil if no such i exists
func find(a : [Int], value : Int) -> Int?

Heuristic:	Boundary	Testing

• Create	tests	at	the	edges	of	subdomains
– Off-by-one	bugs
– “Empty”	cases	(0	elems,	nil,	…)
– Overflow	errors	in	arithmetic	
– Largest/Smallest	values,	0,	...
– Object	aliasing

• Small	subdomains	at	the	edges	of	the	“main”	
subdomains	have	a	high	probability	of	revealing	
many	common	errors
– Also,	you	might	have	misdrawn the	boundaries

Heuristic:	Boundary	Testing
/// - Returns: |x|
public func abs(x : Int) -> Int {…}

class MutableList<T> {
...

/// **Modifies**: self, other
/// **Effects**: removes all elements of other and
/// appends them in reverse order to
/// the end of self
func append(other: MutableList<T>) {
while other.count > 0 {
let element = other.removeLast()
self.append(element)

}
}

}

https://en.wikipedia.org/wiki/Signed_number
_representations#Two's_complement

7

Heuristic:	Glass-Box	Testing
/// primeTable[i] is true if i is prime, for i in
/// 0..<primeTable.count
let primeTable : [Bool] = ...

func isPrime(x : Int) -> Bool {
if x > primeTable.count {

for i in 2..<x/2 {
if x%i == 0 {

return false
}

}
return true

} else {
return primeTable[x]

}
}

Code	Coverage:	Statement	Coverage

func min(a : Int, b : Int) -> Int {
var result = a
if a <= b {
result = a;

}
return result

}

• min(1,2)

Code	Coverage:	Branch	Coverage
func quadrant(x : Int, y : Int) -> Int {
var ans = 0
if x >= 0 {

ans = 1
} else {

ans = 2
}
if (y < 0) {

ans = 4
}
return ans

}

• Test	suite:	(2,-2)	and	(-2,2)

2 1

3 4

Code	Coverage:	Path	Coverage
func quadrant(x : Int, y : Int) -> Int {
var ans = 0
if x >= 0 {

ans = 1
} else {

ans = 2
}
if (y < 0) {

ans = 4
}
return ans

}

• Test	suite:	(2,	-2),	(2,	2),	(-2,	2),	and	(-2,	-2)

2 1

3 4

8

Code	Coverage:	Unbounded	Paths...
func numPositive(a : [Int]) -> Int {

var result = 0
for x in a {

if x > 0 {

ans = 1 // should be ans += 1
}

}
return ans

}

• {0,0}	and	{1}?
• {0,1,0}?

func numPositive(a : [Int]) -> Int {
return a.filter({ $0 > 0 }).count

}

Code	Coverage:	There	Are	Limits

func sumThree(x: Int, y: Int, z: Int) -> Int {
return x + y

}

Pragmatics:	Regression	Testing

• Whenever	you	find	a	bug:
– Record	the	input	eliciting	the	bug	and	the	correct	output
– Add	these	to	the	test	suite
– Verify	that	the	test	suite	fails
– Fix	the	bug
– Verify	the	fix

• Why?
– Ensures	that	your	fix	solves	the	problem
– Helps	to	populate	test	suite	with	good	tests
– Protects	against	reversions	that	reintroduce	bug

Closing	Thoughts	on	Testing

• From	Pragmatic	Programmer	(Read	It!):
– Design	To	Test.
– Test	Early.		Test	Often.		Test	Automatically.

• Quality	over	Quantity
– Good	tests	are	hard	to	write.
– This	will	take	thinking	and	time.

• Every	debugging	session	should	end	with	at	
least	one	new	test	in	your	repo.

9

CS	326
Debugging	and	Avoiding	Failure

Stephen	 Freund

33

Grace	Murray	Hopper,	9/9/47

A	Bug’s	Life

Defect:	
Mistake

Committed	
By	Human

Error:
Incorrect	

Computation

Failure:
Visible	Error:

Program	Violates
Specification

Debugging

How	To	Avoid	Failure

1. Design	and	Verification
– Ensure	there	are	no	defects

2. Testing	and	Validation
– Uncover	failures

3. Defensive	Programming
4. Debugging:	you	never	want	to	reach	this	point...

• Testing	≠	Debugging
– test:	trigger	failure
– debug:	pinpoint	defect	(or	spec	problem)

10

First	Defense:	Impossible	by	Design

• In	the	language
– Swift:	no	type	mismatches,	memory	overwrite	bugs

• In	the	protocols/libraries/modules
– TCP/IP	guarantees	data	is	not	reordered
– Java	BigInteger guarantees	there	is	no	overflow

• In	self-imposed	conventions
– If-let's	to	avoid	null	pointer	errors,	no	rep	expsure
– Immutable	structures	guarantee	behavioral	equality
– Observer	methods	have	no	side	effects
– You	must	maintain	discipline	

Second	Defense:		Correctness

• Get	things	right	the	first	time
– Think	before	you	code
– Easy-to-find	defects	implies	hard-to-find	defects

• Key	techniques:
– Clear	and	complete	specs
–Well-designed	modularity	with	no	rep	exposure
– Testing	early	and	often	with	clear	goals
– …
– Simplicity!

Strive	for	Simplicity

There are two ways of constructing a software
design: One way is to make it so simple that
there are obviously no deficiencies, and the
other way is to make it so complicated that there
are no obvious deficiencies. The first method is
far more difficult.

Sir	Anthony	Hoare

Brian	Kernighan

``

Debugging is twice as hard as writing the
code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by
definition, not smart enough to debug it.

Third	Defense:		Immediate	Visibility

• If	we	can't	prevent	errors,	try	to	localize	them:
– Assertions
– Unit	testing
– Regression	testing

• If	we	can	localize	problems	to	a	single	method	
or	small	module,	life	is	much	better.

11

Run-Time	Assertions

• Fail	Fast!

• When
– Preconditions
– Postconditions
– Rep	Invariants

Run-Time	Assertions

• Check:	Preconditions,	Postconditions,	Rep	
Invariants,	potential	"hidden	errors"

• Example

/// **Requires**: x ³ 0
///
/// - Returns: approximation to square root of x

public func sqrt(_ x : Double) -> Double {
assert(x >= 0.0, "negative parameter to sqrt")
let result = … compute result …
assert(abs(result*result – x) < .0001, "sqrt failed")
return result

}

Hiding	an	Error
// k must be present in a
var i = 0
while (true) {
if a[i] == k {

break
}
i += 1

}

Hiding	an	Error
// k must be present in a
var i = 0
while (i < a.count) {
if a[i] == k {

break
}
i += 1

}

12

Hiding	an	Error
// k must be present in a
var i = 0
while (i < a.count) {
if a[i] == k {

break
}
i += 1

}
assert(i != a.count, "key not found")

Run-Time	Assertions
• Don’t	clutter	code	with	useless	assertions:

let x = y + 1
assert(x == y + 1)

• Don’t	perform	side	effects:	
assert(list.remove(x)) // won’t happen if disabled

// Better:
let found = list.remove(x)
assert(found != nil)

• Most	assertions	better	left	enabled,	even	 in	
production

Expensive	checkRep()	calls

• Eg:	checkRep() on	huge	binary	search	tree
• Best	approach	(not	great):

class ADT {

// set debug to false to disable checkRep tests
static private let debug = true

private func checkRep() {
if (debug) { ... }

}
}

• Also	separate	expensive	tests	into	different	
methods	to	selectively	turn	only	 those	off

Applying	Defenses	to	CS	326?

• Simplicity	of	Design!
– sophisticated	vs.	complicated
– If	code	is	hard	to	write,	it	is	hard	to	understand

• Which	MVC	part	is	easiest	to	test?
– Model?		UIView?		UIViewController?

• Small	self-contained	abstractions	help
– eg:	DotPuzzle,	ModelToViewCoordinates

• When	to	start	thinking	about	 tests?
• Time	spent	writing	tests	vs.	writing	code?

13

Last	Line	of	Defense:	Debugging

• Clarify	symptom
– Simplify	input
– Find	smallest	“minimal”	test	that	produces	failure

• Gain	knowledge	and	understanding	 of	cause
• Fix
• Rerun	all	tests,	old	and	new
• Reflect	on	process

Time	Spent	on	Bug
Un

de
rs
ta
nd

in
g

Debugging

• Be	systematic
• Keep	record	of	everything	you	do
• Question	assumptions
• Follow	iterative	scientific	method:

Interpret
Results

Formulate
Hypothesis

Design
Experiment

Perform
Experiment

Revert	 any	changes	
you	made	 to	

code/data	 after	
experiment

Gain
Knowledge

Example
class String {

// Returns true iff there exist A, B where
// self = A : self : B.
func contains(other: String) -> Bool {...}

}

• It	can't	find	the	string	"very	happy"	within:

"Fáilte,	you	are	very	welcome!	Hi	Seán!	I	am	
very	very	happy	 to	see	you	all."

Reducing	Input	Size

• Absolute	Size. Find	"very	happy"	within:
✘ "Fáilte,	you	are	very	welcome!	Hi	Seán!	I	am	very	
very	happy	to	see	you	all."
✘ "I	am	very	very	happy	to	see	you	all."
✘ "very	very	happy"
✔"very	happy"

• Cannot	 find	"ab"	within	"aab"

14

Reducing	Input	Size

• Relative	Size.	Find	"very	happy"	within:
✘ "I	am	very	very	happy	to	see	you	all."
✔"I	am	very	happy	to	see	you	all."

• General	Simplification	Rules
• Simplest	may	not	be	related	to	initial	inputs
• Binary	search
• Input	could	be	sequence	of	user	steps,	etc.

• same	rules	apply

Localizing	A	Defect

• Take	advantage	of	modularity
– Start	with	everything,	take	away	pieces	until	failure	
goes	away

– Start	with	nothing,	add	pieces	back	in	until	failure	
appears

• Take	advantage	of	modular	reasoning
– Trace	through	program,	viewing	intermediate	results
– Verify	pre/post	conditions	at	module	boundaries

• Employ	binary	search
• Become	proficient	with	available	tools

Binary	Search	on	Buggy	Code
public class MotionDete ctor {

private boolean first = true;
private Matrix prev = new Matrix();

public Point apply(Ma trix current) {

if (first) {

prev = current;

}

Matrix motion = new Matrix();
getDifference(prev, current,motion);

applyThreshold(moti on,motion,10);

labelImage(motion,m otion);

Hist hist = getHist ogram(motion);

int top = hist.getM ostFrequent();

applyThreshold(moti on,motion,top,to p);
Point result = getC entroid(motion);

prev.copy(current);

return result;

}

}

no	problem	yet

problem	exists

Binary	Search	on	Buggy	Code
public class MotionDete ctor {

private boolean first = true;
private Matrix prev = new Matrix();

public Point apply(Ma trix current) {

if (first) {

prev = current;

}

Matrix motion = new Matrix();
getDifference(prev, current,motion);

applyThreshold(moti on,motion,10);

labelImage(motion,m otion);

Hist hist = getHist ogram(motion);

int top = hist.getM ostFrequent();

applyThreshold(moti on,motion,top,to p);
Point result = getC entroid(motion);

prev.copy(current);

return result;

}

}

no	problem	yet

no	problem	yet

15

Binary	Search	on	Buggy	Code
public class MotionDete ctor {

private boolean first = true;
private Matrix prev = new Matrix();

public Point apply(Ma trix current) {

if (first) {

prev = current;

}

Matrix motion = new Matrix();
getDifference(prev, current,motion);

applyThreshold(moti on,motion,10);

labelImage(motion,m otion);

Hist hist = getHist ogram(motion);

int top = hist.getM ostFrequent();

applyThreshold(moti on,motion,top,to p);
Point result = getC entroid(motion);

prev.copy(current);

return result;

}

}

no	problem	yet

problem	exists

Logging	Events

• Log	events	during	execution
– print,	NSLog,	...

• Logs	help	reconstruct	 the	past
– Particularly	on	failing	runs
– And/or	compare	failing	and	non-failing	runs

• Log	may	be	all	you	know	about	a	customer’s	
environment
– Needs	to	tell	you	enough	to	reproduce	the	failure

After	You	Fixed	Bug:	Reflection

• Debugging	is	a	skill	acquired	over	 time
• Reflect	on	your	debugging	experience
– what	was	the	symptom?
– what	was	the	ultimate	cause?
– was	your	debugging	process	effective?
– how	could	you	have	avoided	defect?	found	it	sooner?

• Unit	Test?	assertion?	checkRep()?	Better	Design?	Better	
Spec?	Better	Communication?	Reading	the	Docs?

• Learn	from	experience	
– Steve	H.	garage	height	story...

Detecting	Bugs	in	the	Real	World

• Real	Systems
– Collection	of	modules,	written	by	multiple	people
– Complex	input,	output
– Many	external	interactions	
– Non-deterministic	"Heisenbugs"

• "Heisenbugs"
– Infrequent	failure
– Instrumentation	eliminates	the	failure

• Defects	cross	abstraction	barriers	
• Large	time	lag	from	defect	to	failure
• Limited	debugging/logging	capabilities

16

Closing	Thoughts	on	Debugging
• Designing	for	failure	pays	off	many	fold.
• Assume	code	has	bugs.		Prove	yourself	wrong.
• Be	pleasantly	surprised	when	code	passes	tests.
• When	the	going	gets	tough:

1. Make	sure	it's	a	bug	– check	spec
2. Rule	out	simple	problems	(typos,	parameter	order,	...)
3. Reconsider	assumptions
4. Take	Wally	for	walk
5. Talk	 to	friend,	rubber	ducky
6. Start	documenting	system
7. Go	to	bed

Know	Yourself
• Don't	let	yourself	reach	this	point:

• Check	 in	with	yourself:	
– Are	you	making	progress	on	understanding?
– Are	you	getting	frustrated?
– Reflection	is	important

Whack-a-Mole	 Debugging Monkeys-at-Keyboards	Time

