CS 326
Building Systems in the Wild

Stephen Freund

Almost to the Finish Line...

* (S 326 has been all about software design,
specification, testing, and implementation
— Absolutely necessary for any nontrivial project

¢ But not sufficient for the real world

— Software Engineering: Techniques for larger systems
and development teams

* architecture, tools, scheduling, implementation order

— Usability: interfaces engineered for humans (HCI)

Software Architecture

* High-level structure of a software system

— Principled approach to partitioning modules and
controlling dependencies / data flow among them

* Common architectures have well-known names
and well-known advantages/disadvantages

* A good architecture ensures:
— Work can proceed in parallel
— Progress can be closely monitored

— The parts combine to provide the desired
functionality

Example Software Architectures

Pipe-and-filter (think: iterators)

pipe pipe pipe pipe
Source Filter Filter Filter Sink

Blackboard

(think: callbacks) (think: levels of abstraction)

Presentation layer |
i

Component | Component | Web-Server

Business layer
Backend

‘Application-Server

Data access Collaboration
ogic

Legacy-
Application

Message
store

Component

Enterprise
Information

Workflow Personalization | (¢—>1

ete. Connectors System
| Component | \1 Component | 28 Data layer

5/5/20

Good Architectures Support

* Scaling to support large numbers of
* Flexibility

— Adding and changing features

— Easy customization (Ideally with no programming)
* Versatility

— Integration of acquired components

— Communication with other software

— Software to be embedded within a larger system
* Recovery from wrong decisions

— About technology... About markets...

Software Architecture

* Have one! Subject it to serious scrutiny!
— At relatively high level of abstraction
— Basically lays down communication protocols
* Strive for simplicity
— Know when to say no
— A good architecture rules things out
* Reusable components should be a design goal
— Software is capital
— This will not happen by accident

Temptations to Avoid

* Avoid feature creep
— Costs under-estimated
— Benefits over-estimated
— A Swiss Army knife is rarely the right tool

* Avoid digressions
— eg: premature tuning

* Often addresses the wrong problem

Tools: Build Management

* Building software requires many tools:

— Swift compiler, simulator, C/C++ compiler, GUI
builder, Device driver build tool, Web server,
Database, scripting language for build automation,
parser generator, test generator, test harness

— Reproducibility is essential

— Wrong or missing tool can drastically reduce
productivity.

— Hard to switch tools in mid-project.

* |f you’re doing work the computer could do for
you, then you’re probably doing it wrong.

5/5/20

Tools: Version Control

* You've all been using it
— Collect work (code, documents) from team members
— History of changes
— Synchronize team members to current source
— Have multiple teams make progress in parallel
— Manage multiple versions, releases of the software
— Identify regressions more easily

* Establish policies

— When to check in, when to update, when to branch
and merge, how builds are done, ...

Tools: Continuous Integration

i (4]
° BU|Id and teSt Fail or Succeed Test

every commit (s

4 =
— Catch errors =] Buit
[—Jc . =
€a rly Imeg‘r’:t'il:: oSuesrver
. == B 2
— Localize bugs Fetch Changes
to specific
change Notify S Check In
g O oty sugeess

— Prevent bad
code from

spreading n ® ®

Tools: Bug Tracking

* Issue tracking system supports:
— Tracking and fixing bugs
— ldentifying problem areas and managing them
— Communicating among team members
— Tracking regressions and repeated bugs

* Example tools:

— GitHub, Bugzilla, Flyspray, Trac, Sourceforge, Google
Developers, GitLab/GitHub, Bitbucket, ...

— https://github.com/stephenfreund/cs326

Tools: Bug Tracking

* Establish good process.
* Make it explicit in a policy.
* Keep it simple!

Discover

5/5/20

https://github.com/stephenfreund/cs326

How Does a Project Become a Year
Late?

* It’s not the hurricanes that get you

* It’s the termites
— Someone missed a meeting
— Someone's keyboard broke
— The compiler wasn’t updated
— Bad flu season. Or maybe a pandemic...
— Missing documentation
— Manager quit

Scheduling

— Must be objectively checkable by outsiders

Unrealistically optimistic schedules are a
disaster

— Decisions get made at the wrong time
— Decisions get made by the wrong people

— Decisions get made for the wrong reasons

Must predict time/cost to build software

Schedule is needed to make slippage visible

It will always take longer than you expect.
Always.

Effort != Progress

* Effort
— Product of workers and time. (eg: person-months)
— Easy to track.
* Progress
— Forward movement toward a destination.
— Hard to track.
— No one likes to admit lack of progress...

* Design the development process and architecture

to facilitate tracking progress.

Controlling the Schedule

* Have one!
— Know effects
of S|ippage Example
¥ Lab
- KnOW What ¥ Problem 1: Model
to WOrk on Design Model
Implement Model
When Write Spec Test Driver
e Gantt Chart Unit Test Model

Model 100% Tested
¥ Problem 2: Ul
Design Controller and View
Implement Ul
Unit Test Ul
Integration Test App
App 100% Complete

5/5/20

Milestones

* Verifiable

— Module 100% coded

— Unit testing 100% complete
* Non-verifiable

— 90% of coding done

— 90% of debugging done

— Design complete

* Avoid non-verifiable milestones

Typical Milestones

* Design complete / design freeze

* Interfaces complete / feature freeze

* Code complete / code freeze

* Alpha release

* Beta release

* Release candidate (RC)

FCS (First Commercial Shipment) release

When You Know You'll Miss
Milestone

* Reflect on why. Hold people accountable.

* Four options
— Same deadline, same amount of work X
— Same deadline, reduced scope of work
— Later deadline, same scope of work
— Later deadline, increased scope of work X
* Wrong choice made often...
* Take no small slips
— One big adjustment is better than three small ones

Possible Ways To Shorten Timeline

* Add people
— Startup cost (“mythical man-month”), communication
cost

* Buy components

— Hard in mid-stream
* Change deliverables

— Customer must approve
* Change schedule

— Customer must approve

5/5/20

How to Code and Test Your Design

* You have a design and architecture

* Key question: what to do when?

Bottom-up

* Implement/test children first

* First, G in isolation. Then E.

— For example: G, E,B,F, C,D, A

— Generate test data
— Construct drivers

* ThenB, F, C,D.

— A test of module M tests: whether M works, and
whether modules M calls behave as expected

— When a failure occurs, many possible sources of defect
— Integration testing is hard, irrespective of order

Building Drivers

* Use a person
— Simplest choice, but also worst choice
— Errors in entering data are inevitable
— Errors in checking results are inevitable

— Tests are not easily reproducible
* Problem for debugging
* Problem for regression testing

— Test sets stay small, don’t grow over time
— Testing cannot be done as a background task

* Instead: Automated drivers in a test harness
— GraphADT, SocialNetworks, CampusPaths,...

Top-down

Implement/test parents first
First: A

— build stubs to simulate B, C, and D
Then: B

— Build a stub for E

— Drive B using A

Then: C

— Possibly reuse E, if sufficient, or create new stub

5/5/20

Implementing a Stub

* Query a person at a console.

* Print a message describing the call.

— Name of procedure and arguments

— Fine if calling program does not need result
* Provide “canned” results.

— UtterKit's canned responses
* Provide a primitive implementation.

— Inefficient & incomplete
— Best choice, if not too much work
— Look-up table often works

Top-Down vs. Bottom-Up

¢ Which is Better?

* Neither dominates

— Understand advantages/disadvantages of each
— Helps you design an appropriate mixed strategy

When Do You Catch
Design Errors?

When Do Visible
Components Work?

How Much
Integration Work?
(less is better)

Amount of Work?

Testing Time
Distribution?

Good Practice

* Largely top-down
— But always unit test modules

* Switch to bottom-up

— Low level module that is used in lots of places
— Low-level performance concerns

* Depth-first, visible-first
— Allows interaction with customers, like prototyping
— Lowers risk of having nothing useful

— Improves morale of customers and programmers
* Have something to show early on.

5/5/20

Perspective...

» Software project management is challenging
— Different intellectual demands than programming
— Mix of hard and soft skills
— Communication, writing, problem solving, reflection
— eg: a liberal arts education

* We've only skimmed the surface
— Software Engineering is an entire field within CS

Wrap Up

“Controlling complexity is the
essence of computer programming.

(UNIX, AWK, G, ...)

7”7

-- Brian Kernighan

Goals

* Primary focus: writing correct programs

— What does it mean for a program to be correct?
* Specification (vs Requirements)

— How do we determine if a program is correct?
* Reasoning, Verification, Testing

— How do we build correct programs?
* Principled design and development
* abstraction, modularity

* documentation

* Will cover both principles and tools.

Outcomes

* Better at design

* Better at coding

* Better at debugging

* Better at using development tools

* Better at evaluating quality / behavior
* Better at communication

* Essential skills regardless of what you do next

5/5/20

5/5/20

Life After 326... Life After 326...

* System building can be rewarding and fun * Your next project can be much more ambitious.
— Never "easy" (but what worthwhile endeavors are?) — Be confident but humble
— There are always new challenges — Recognize your own strengths and weaknesses
— It’s even more fun when you’re successful * We all have both

* Life-long process
— Like being a good writer of prose
— Practice is a good teacher

* Requires thoughtful introspection

* Pay attention to what matters

— Take advantage of the techniques and tools you’ve
learned (and will learn!)

— Make good decisions, not expedient decisions)
* Don’t learn only by trial and error!

— Voraciously consume ideas and tools

