
5/5/20

1

CS 326
Building Systems in the Wild

Stephen Freund

Almost to the Finish Line...

• CS 326 has been all about software design,
specification, testing, and implementation
– Absolutely necessary for any nontrivial project

• But not sufficient for the real world
– Software Engineering: Techniques for larger systems

and development teams
• architecture, tools, scheduling, implementation order

– Usability: interfaces engineered for humans (HCI)

Software Architecture

• High-level structure of a software system
– Principled approach to partitioning modules and

controlling dependencies / data flow among them
• Common architectures have well-known names

and well-known advantages/disadvantages
• A good architecture ensures:
–Work can proceed in parallel
– Progress can be closely monitored
– The parts combine to provide the desired

functionality

Example Software Architectures
Pipe-and-filter (think: iterators)

Blackboard Layered
(think: callbacks) (think: levels of abstraction)

Filter Filter Filter SinkSource
pipe pipe pipe pipe

Message
store

Component

Component Component

Component

Component

5/5/20

2

Good Architectures Support

• Scaling to support large numbers of ______
• Flexibility
– Adding and changing features
– Easy customization (Ideally with no programming)

• Versatility
– Integration of acquired components
– Communication with other software
– Software to be embedded within a larger system

• Recovery from wrong decisions
– About technology... About markets...

Software Architecture

• Have one! Subject it to serious scrutiny!
– At relatively high level of abstraction
– Basically lays down communication protocols

• Strive for simplicity
– Know when to say no
– A good architecture rules things out

• Reusable components should be a design goal
– Software is capital
– This will not happen by accident

Temptations to Avoid

• Avoid feature creep
– Costs under-estimated
– Benefits over-estimated
– A Swiss Army knife is rarely the right tool

• Avoid digressions
– eg: premature tuning

• Often addresses the wrong problem

Tools: Build Management
• Building software requires many tools:
– Swift compiler, simulator, C/C++ compiler, GUI

builder, Device driver build tool, Web server,
Database, scripting language for build automation,
parser generator, test generator, test harness

– Reproducibility is essential
–Wrong or missing tool can drastically reduce

productivity.
– Hard to switch tools in mid-project.

• If you’re doing work the computer could do for
you, then you’re probably doing it wrong.

5/5/20

3

Tools: Version Control

• You've all been using it
– Collect work (code, documents) from team members
– History of changes
– Synchronize team members to current source
– Have multiple teams make progress in parallel
–Manage multiple versions, releases of the software
– Identify regressions more easily

• Establish policies
–When to check in, when to update, when to branch

and merge, how builds are done, ...

Tools: Continuous Integration

• Build and test
every commit
– Catch errors

early
– Localize bugs

to specific
change

– Prevent bad
code from
spreading

Tools: Bug Tracking

• Issue tracking system supports:
– Tracking and fixing bugs
– Identifying problem areas and managing them
– Communicating among team members
– Tracking regressions and repeated bugs

• Example tools:
– GitHub, Bugzilla, Flyspray, Trac, Sourceforge, Google

Developers, GitLab/GitHub, Bitbucket, …
– https://github.com/stephenfreund/cs326

Tools: Bug Tracking

• Establish good process.
• Make it explicit in a policy.
• Keep it simple!

Bug
found

Prioritize Assign Replicate Examine

Discover Fix Verify Close

https://github.com/stephenfreund/cs326

5/5/20

4

How Does a Project Become a Year
Late?

• It’s not the hurricanes that get you

• It’s the termites
– Someone missed a meeting
– Someone's keyboard broke
– The compiler wasn’t updated
– Bad flu season. Or maybe a pandemic…
–Missing documentation
–Manager quit

Scheduling

• Must predict time/cost to build software
• Schedule is needed to make slippage visible
–Must be objectively checkable by outsiders

• Unrealistically optimistic schedules are a
disaster
– Decisions get made at the wrong time
– Decisions get made by the wrong people
– Decisions get made for the wrong reasons

• It will always take longer than you expect.
Always.

Effort != Progress

• Effort
– Product of workers and time. (eg: person-months)
– Easy to track.

• Progress
– Forward movement toward a destination.
– Hard to track.
– No one likes to admit lack of progress...

• Design the development process and architecture
to facilitate tracking progress.

Controlling the Schedule
• Have one!
– Know effects

of slippage
– Know what

to work on
when

• Gantt Chart

5/5/20

5

Milestones

• Verifiable
–Module 100% coded
– Unit testing 100% complete

• Non-verifiable
– 90% of coding done
– 90% of debugging done
– Design complete

• Avoid non-verifiable milestones

Typical Milestones

• Design complete / design freeze
• Interfaces complete / feature freeze
• Code complete / code freeze
• Alpha release
• Beta release
• Release candidate (RC)
• FCS (First Commercial Shipment) release

When You Know You'll Miss
Milestone
• Reflect on why. Hold people accountable.
• Four options
– Same deadline, same amount of work
– Same deadline, reduced scope of work
– Later deadline, same scope of work
– Later deadline, increased scope of work

• Wrong choice made often...
• Take no small slips
– One big adjustment is better than three small ones

✘

✘

Possible Ways To Shorten Timeline

• Add people
– Startup cost (“mythical man-month”), communication

cost
• Buy components
– Hard in mid-stream

• Change deliverables
– Customer must approve

• Change schedule
– Customer must approve

5/5/20

6

How to Code and Test Your Design

• You have a design and architecture
• Key question: what to do when?

A

B C D

E F

G

Bottom-up
• Implement/test children first
– For example: G, E, B, F, C, D, A

• First, G in isolation. Then E.
– Generate test data
– Construct drivers

• Then B, F, C, D.
– A test of module M tests: whether M works, and

whether modules M calls behave as expected
–When a failure occurs, many possible sources of defect
– Integration testing is hard, irrespective of order

A

B C D

E F

G

Building Drivers
• Use a person
– Simplest choice, but also worst choice
– Errors in entering data are inevitable
– Errors in checking results are inevitable
– Tests are not easily reproducible

• Problem for debugging
• Problem for regression testing

– Test sets stay small, don’t grow over time
– Testing cannot be done as a background task

• Instead: Automated drivers in a test harness
– GraphADT, SocialNetworks, CampusPaths,...

Top-down

• Implement/test parents first
• First: A
– build stubs to simulate B, C, and D

• Then: B
– Build a stub for E
– Drive B using A

• Then: C
– Possibly reuse E, if sufficient, or create new stub

• ...

A

B C D

E F

G

5/5/20

7

Implementing a Stub

• Query a person at a console.
• Print a message describing the call.
– Name of procedure and arguments
– Fine if calling program does not need result

• Provide “canned” results.
– UtterKit's canned responses

• Provide a primitive implementation.
– Inefficient & incomplete
– Best choice, if not too much work
– Look-up table often works

Top-Down vs. Bottom-Up

• Which is Better?

• Neither dominates
– Understand advantages/disadvantages of each
– Helps you design an appropriate mixed strategy

Criteria Top-Down Bottom-Up

When Do You Catch
Design Errors?

Early. Tests global
decisions first. (Most
devastating if wrong.)

Late. Uncovers low-
level efficiency
problems first

When Do Visible
Components Work?

Early. Completion of
top-level components
first.

Late. Lots of
"invisible"
components first.

How Much
Integration Work?

(less is better)

Less. Add one module
at a time.

More. Connect
multiple modules.

Amount of Work?
More. Build stubs,
not drivers (stubs
usually more work)

Less. Build drivers not
stubs

Testing Time
Distribution?

Evenly-distributed,
but each time, test
more functionality.

More at End. More
difficult as you
proceed.

Good Practice

• Largely top-down
– But always unit test modules

• Switch to bottom-up
– When stubs are too much work, just implement real thing
– Low level module that is used in lots of places
– Low-level performance concerns

• Depth-first, visible-first
– Allows interaction with customers, like prototyping
– Lowers risk of having nothing useful
– Improves morale of customers and programmers

• Have something to show early on.

A

B C D

E F

G

5/5/20

8

Perspective…

• Software project management is challenging
– Different intellectual demands than programming
–Mix of hard and soft skills
– Communication, writing, problem solving, reflection
– eg: a liberal arts education

• We’ve only skimmed the surface
– Software Engineering is an entire field within CS

“Controlling complexity is the
essence of computer programming.”

-- Brian Kernighan
(UNIX, AWK, C, …)

Wrap Up

32

Goals
• Primary focus: writing correct programs
–What does it mean for a program to be correct?

• Specification (vs Requirements)

– How do we determine if a program is correct?
• Reasoning, Verification, Testing

– How do we build correct programs?
• Principled design and development
• abstraction, modularity
• documentation

• Will cover both principles and tools.
33

Outcomes
• Better at design
• Better at coding
• Better at debugging
• Better at using development tools
• Better at evaluating quality / behavior
• Better at communication

• Essential skills regardless of what you do next

34

5/5/20

9

Life After 326...

• System building can be rewarding and fun
– Never "easy" (but what worthwhile endeavors are?)
– There are always new challenges
– It’s even more fun when you’re successful

• Pay attention to what matters
– Take advantage of the techniques and tools you’ve

learned (and will learn!)
–Make good decisions, not expedient decisions

Life After 326...

• Your next project can be much more ambitious.
– Be confident but humble
– Recognize your own strengths and weaknesses

• We all have both

• Life-long process
– Like being a good writer of prose
– Practice is a good teacher

• Requires thoughtful introspection
• Don’t learn only by trial and error!

– Voraciously consume ideas and tools

