CS 326
Specification & ADTs

Stephen Freund

Where we are

* Basics of Reasoning about code
* Coming up
— Specification: What are we supposed to build?
— Design: Abstraction. Which designs are “better”?
— Implementation: Building code to meet a specification
— Testing: Systematically finding problems
— Debugging: Systematically fixing problems
— Maintenance: How does the artifact adapt over time?

— Documentation: What do we need to know to do these
things? How/where do we write that down?

Scaling Software Systems

Ease of
Implementation

and

Flexibility

v

Size

Class Interface

class MutableList<T : Comparable> {

var count : Int { ... }

func get(index: Int) -> T { ... }

func set(index: Int, to value: T) ->T { ... }
func append(_ t : T) { ... }

static func isSubsequence(_ part : MutableList<T>,
of list: MutableList<T>) -> Bool {

9/13/18

Just Read The Code

static func isSubsequence(_ part : MutableList<T>,
of list: MutableList<T>) -> Bool {
var partIndex = 0
for element in list {
if element == part.get(partIndex) ({
partIndex += 1
if partIndex == part.count {
return true
}
} else {
partIndex = 0
}
}

return false

Just Read The Comments

// Check whether part appears as a contiguous subsequence
// of list.
static func isSubsequence(_ part : MutableList<T>,
of list: MutableList<T>) -> Bool {
var partIndex = 0
for element in list {
if element == part.get(partIndex) {
partIndex += 1
if partIndex == part.count ({
return true
}
} else {
partIndex = 0

}

return false

Write Appropriate Specification

// Check whether part appears as a contiguous subsequence
// of list.

* Document Caveats
// * If list is empty, always returns false
// * Results may be unexpected if partial matches
// can happen right before a real match; e.g.,
// (1,2,1,3) will not be identified as a
// sub sequence of (1,2,1,2,1,3).

* Or Replace with More Detailed Behaviour
// This method scans “list" frombeginning
// to end, building up a match for “part”, and
// resetting that match every time that...

Write Better Code... (And Spec)

// Returns true iff there exist possibly empty

// sequences A, B where

// list =A : part : B

// and “:” is sequence concatenation.

static func isSubsequence (_ part : MutableList<T>,

of list: Mutablelist<T>) -> Bool {

9/13/18

Quick Help For Array.index(of:)

if let index = data.index(of: x) {

func index(of element: T) —> Int?
Returns the first index where the specified value appears in the
collection.

After using index(of:) to find the position of a particular element in a
collection, you can use it to access the element by subscripting. This

example shows how you can modify one of the names in an array of ol 1 s

students.

var students = ["Ben", "Ivy", "Jordell", "Maxime"]

if let i = students.index(of: "Maxime") {
students[i] = "Max"

}

print(students)
// Prints "["Ben", "Ivy", "Jordell", "Max"]"

element An element to search for in the collection.

The first index where element is found. If element is not found in the
collection, returns nil.

Swift
MALULITUTA = U

Swift

Stancard Librory — P —

Instance Method

index(of:)
Developer ST —
collection.
.
Documentation
Declaration
func index(of element: Element) -> Int?
Parameters

element
An element to search for in the collection.

Return Value

‘The first index where element is found. If element s not found in the
collection, returns nil.

Discussion

After using index (of :) to find the position of a particular element ina
collection, you can use it to access the element by subscripting. This example
shows how you can modify one of the names in an array of students.

Listing 1

var students = ["Ben", "Ivy", "Jordell”, "Maxime"]

if let i = students.index(of: "Maxime") {
students[i] = "Max"

)

print (students)

/1 Prints "["Ben", "Ivy", "Jordell", "Max"1"

Language
swift

SDK

Xcode 8.0+

Framework
Swift Standard Library

On This Page
Dectaration
Parameters
Return Value

Discussion

Swift Comments

J**

Returns the first index where the specified value appears in the collection.

After using ‘index(of:) to find the position of a particular element in a
collection, you can use it to access the element by subscripting. This

example shows how you can modify one of the names in an array of students.

var students = ["Ben", "Ivy", "Jordell", "Maxime"]

if let i = students.index(of: "Maxime") ({
students[i] = "Max"

}

print (students)
// Prints "["Ben", "Ivy", "Jordell", "Max"]"

- Parameter element: An element to search for in the collection.

- Returns: The first index where element is found. If element is
not found in the collection, returns nil.
*/

func index (of element: Element) -> Int? {

CS326 Specifications

/xx

Requires: none (can omit in this case)
Modifies: self

Effects: Changes the first occurrence of oldValue to newValue

Parameter oldValue: element to replace.

Parameter newValue: what to replace it with.

Returns: The first index where oldValue is found, or nil
if it does not occur in the list.
*/
func replace(_ oldValue: T, with newValue: T) -> Int? {
for i in 0._.<coum: {
if get(i) == oldValue {
set (i, to: newValue)

return i

}

return nil

9/13/18

9/13/18

CS326 Specification Pieces C/§325 Specifications

* Precondition: constraints that hold before the methodis
called (if not, all bets are off)

— **Requires**: spells out any obligations on dient

Requires: listl and list2 are the same size

Modifies: none

Effects: none

- Parameter listl: ...

* Postcondition:constraints that hold afterthe method is - barameter listz. ...
Ca”ed (ifthe precon dition held) - Returns: A list of the same size as the parameters, where
Modifies: lists objects that may be affected by method; any the ith element is the sum of the ith elements of listl and list2
object not listed is guaranteed to be untouched s:;tic func pointwiseSun(_ listl : MatableList<Int>,
— **Effects**: gives guarantees on final state of modified objects N Mutablemt_ql:::(z) : MutableList<Int>) -> MutableList<Int> {
— Standard "Returns" tag for i in 0..<listl.count {
— Standard "Throws": lists possible exceptions and conditions , result.sppend(listl.ger(i) + istz.ger()

under which they are thrown (won't worry about for now) return result

}

CS326 Specifications CS326 Specifications

/** /**

Requires: self and other are the same size **Requires**: ??
Modifies: self **Modifies**: 2?7
Effects: the ith element of other is added **Effects**: ?°?

to the ith element of self

*/
%/ func uniquify() {
func add(_ other : MutableList<Int>) { for i in 0..<count-1 {
for i in 0. .<count { if get(i) == get(i+l) {
set(i, get(i) + list2.get(i)) remove (i)
} }
} }
}

Satisfaction of a Specification

* Let M be animplementationand S a specification

* M satisfies S if and only if
— Every behavior of M is permitted by S

* If M does not satisfyS, either (or both!) could be
“wrong”

— Usually better tochange the program than the spec

Comparing Specifications
* Specification S1is weaker than S2, if forall M,
M satisfies S2 => M satisfies S1

* A weaker specification gives greater freedom to
the implementer

Which is Weaker? A orB?

func index(of element: Element) -> Int? {
for i in 0. .<count {
if get(i) == element {
return i

} Weaker Specification:

i ¢ Implementer: Easier to satisfy (more
return nil implementations satisfy it)
} ¢ Client: Harder to use (fewer

Specification A guarantees)

}

— requires: value occursinself

— returns: i suchthatget (i) =value
SpecificationB

— requires: valueoccursinsel £

— returns: smallest i such thatget(i) =value

Which is Weaker? A or C?

func index(of element: Element) -> Int? {
for i in 0. .<count {
if get(i) == element {
return i
}
}

return nil

}

Specification A
— requires: value occursin sel£
— returns: i suchthat get (i) =value

Specification C
— returns: i suchthat get (i) =value, or nil if valueisnotin self

9/13/18

Weakening a Specification

* Promise Less

Returns: smallest possible
index of keyin items

>

Returns: index of key in items

— Weaker Postcondition

* Returns clause easier to satisf
* More objects in modifies clause

Modifies: none

Modifies: list1, list2

* Effects clause easier to satisf\
* Fewer specific exceptions >

Effects: self.x == old(self.x) + dx

Effects: self.x > old(self.x) + dx

¢ Ask more of client

— Stronger Precondition

* Requires clause harder to satisfy—__|

(Strengthening: The Opposite)

Requires: self is not the
Cartesian origin

Requires: self is a Cartesian
point in the first quadrant

Which is Better?

* Stronger does not always mean better!

* Weaker does not always mean better!

* Strength of specification trades off:

— Usefulness to client
— Ease of simple, efficient, correctimplementation

— Promotion of reuse and modularity

— Clarity of specificationitsel f

* “It depends”

Two Representations of Points

class Point {
public float x;
public float y;

class Point {
public float r;

32)

A

public float theta;

Point ADT

public class Point {

// A 2-

public
public
public
public
// ...
public
public
/] ...
public
public

d point exists in the plane,
var x : Double
var y : Double
var r : Double
var theta : Double

can be created, ...
init() // new point at (0,0)
init (points : Set<Point>) // centroid

can be moved, ...

func translate(dx: Double, dy: Double)

func scaleAndRotate (dr: Double,
dTheta: Double)

Observers — may be actual
or computed properties.

Creators/
Producers

utators

9/13/18

Abstract Data Type = Objects + Ops

Point
rest of X | e
program y
r (-]
theta [0 © 0®®
translate © @ o o
scaleRot | ~—@ 0 °
clients abstraction implementation

barrier

Poly: Overview and Abstract State

] **
A Poly is an immtable polynomial with
integer coefficients. A typical Poly is

+ *x+*x"2+...
*/

public class Poly { Abstract state (specification fields)

Poly: Creators

]
o

/// **Effects**: makes a new Poly
public init()

/// **Requires**: n >= 0
/// **Effects**: makes a new Poly = coeff * x*n
public init(c: Int, n: Int)

(Note: full specs omitted to save space; style might notbe

perfect either —focus on mainideas.)

Poly: Observers

/// The degree of self, ie largest exponent with a
/// non-zero coefficient, or 0 if self = 0.
public var degree : Int

[**

Requires: d >= 0

- Returns: The coefficient of the term of self whose

exponent is d.
*/
public func coefficient(for d: Int) -> Int

9/13/18

Poly: Producers

/// - Returns: self + q, as a Poly
public func add(_ q : Poly) -> Poly

/// - Returns: self * q, as a Poly
public func mul (_ q : Poly) -> Poly

/// - Returns: -self
public func negate() -> Poly

let p = Poly(2,4)
let g = p.mul(p)
let r = g.negate ()

Aside: Operator Overloading

/// - Returns: p + g
static public func +(_ p : Poly, _ q : Poly) -> Poly

/// - Returns: p * q
static public func *(_ p : Poly, _ q : Poly) -> Poly

/// - Returns: -p

static public prefix func -(_p : Poly) -> Poly
let p = Poly(2,4)

letg=p *p

let r = —-gq

IntSet: Overview, Abs State, Creator

/// Overview: An IntSet is a mutable,

/// unbounded set of integers. A typical
/// IntSet is { x1, ..., xn }.

class IntSet {

/// **Effects**: makes a new IntSet = {}
public init()

IntSet: Observers

/// - Returns: true if and only if element in self
public func contains (_ element: Int) -> Bool

/// Number of elements in the set
public var count : Int

/// - Returns: Some element of self.
/// - Throws: EmptyError if self is empty
public func choose() throws -> Int

9/13/18

IntSet: Mutators

/// **Modifies**: self
/// **Effects**: self post = self pre U { element }
public func add(_ element : Int)

/// **Modifies**: self
/// **Effects**: self post = self pre - { element }
public func remove(_ element : Int)

Stronger and Weaker Specifications

* Weaker specification:

— Implementer: Easier to satisfy (more
implementations satisfy it)
— Client: Harder to use (fewer guarantees)

* Stronger specification:
— Implementer: Harder to satisfy
— Client: Easierto use (more guarantees, more
predictable, can make more assumptions)

9/13/18

