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Requirements

How the customer 
explained it

How the Project Leader 
understood it

How the Analyst designed 
it

How the Programmer 
wrote it

How the Business 
Consultant described it

Requirements

How the project was 
documented

What operations InstalledHow the customer was 
billedHow it was supportedWhat the customer really 

needed

Requirements

• A necessary function, attribute, capability, 
characteristic, or quality of a system.

• Build the System Right 
– everything until now

• Build the Right System
– today
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How To Build A Bridge

1. Determine the requirements the bridge 
must meet.

2. Make a complete design.
– blueprints, materials, building method, etc.

3. Build (implement) it.
4. Test it to make sure its 

going to work.

Waterfall Model 
• Foundation for all software design methodologies

Contemporary
Software Engineering
Can be far more flexible due to zero materials cost.

1. Make first pass at requirements and design.  
– Will not be complete.

2. Implement key features and basic functionality.
3. Use initial implementation to refine the requirements 

and design.
4. Implement more features, continue to refine 

requirements/design, and provide continual releases of 
the running application.
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Requirements

• Who are the stakeholders?
• Customers: show what should be delivered; 

contractual base
• Managers: a scheduling / progress indicator
• Designers: provide a spec to design
• Programmers: list a range of acceptable 

implementations 
• QA / Testers: a basis for testing, validation, 

verification 
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Digging For Requirements

• Do:
– Talk to the users (or work with them) to learn how they work.
– Ask questions throughout the process to "dig" for 

requirements.
– Think about why users do something, not just what. 
– Allow (and expect) requirements to change later.

• Don't: 
– Describe complex business logic or rules of the system. 
– Be too specific or detailed.
– Describe the exact UI used to implement a feature.
– Try to think of everything ahead of time.  You will fail.
– Add unnecessary features not wanted by the customers.

cultural anthropology!

Positive/Negative Examples
• The system will enforce sales tax on all purchases.
• The system shall display the elapsed time for the car to 

make one circuit around the track within 5 seconds, in 
hh:mm:ss format.

• The product will never crash and be secure against 
hacks.

• The server backend will be written using PHP or Ruby 
on Rails.

• The system will support a large number of connections 
at once, and no user will experience slowness or lag.

• The user can choose a document type from the drop-
down list

Requirements Give Shared Vision

• Software project involving n people starts out 
with n different impressions on how the app 
should be structured.

• Primary goal is to unify those n visions into one 
cohesive vision.
– Extensive discussion, questioning, sketching.
– All parties involved need to be at the table: 

management, developers, customers.

Requirements Docs: Your Vision

• Vision Statement
– a paragraph or two on the shared vision of customer 

and developers on what the app should do.
• Feature List
– A bullet list of features the application should have

• Sketches/storyboards
– user interfaces and how they are used

• Use cases
– step-by-step sequences of how a particular scenario 

of user-app interaction should play out
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Requirements Docs: Your Vision

• Domain Analysis
– Understand the underlying domain of the app

• Software Architecture
– Not really a requirement...
– But good think about top-level architecture early on.  

Other Activities

• Prototypes
– verify feasibility of core requirements
– ensure libraries/frameworks will do what you need
– Tracer bullets, Prototyping, Requirements Pit (PP)

• User Perspective
– Identify needs of users (actors) that will be 

interacting with the system

Big Picture Questions

• What is the market for the app? 
• Who will actually use it?
• Do similar apps already exist?
• What is the feasibility of coding it in the 

available time frame?
• Can it logically be split amongst the team?
• What is the team organizational structure? 
– Strong leader, collection or leaders, or highly 

democratic?

Vision Statement

• What is the basic problem or opportunity?
• What is your app's primary goal?
• How does the app achieve your goal? 
–What are the primary features?
–Who are the intended users?
–What outcomes do you expect?

• Refer back to this to remain focused on primary 
objectives.
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Feature List

• Simple bullet list of single-sentence descriptions
• Describe from users perspective
• Identify: core vs optional/extended features
• Should be self-consistent
• Avoid Feature Creep
– Gradual accumulation of features as project 

progresses
– PP: Stone Soup, Boiled Frogs, ...

Student Services Porthole Features
• Transcript

– Calculate the average grade on a transcript.
– List the classes of a student on a transcript.
– Display the name/address of a student on a transcript.

• Enrollment
– List the prerequisites for a class.
– Enroll a student in a class.
– Drop a student from a class.
– Add at student to a class waiting list.

• Meal Plans
– List available meal plans
– Calculate fees for meal plan

CampusPaths App Features

• Show Map
– Displays map of campus with buildings marked.
– User can navigate around the map.

• Finding Paths
– User can select two buildings.
– The shortest path between selected buildings is shown.
– [Optional] Alternative paths are also shown.

• Detailed Instructions
– User can view shortest path as step-by-step instructions.
– Each step conveys a distance and compass direction.
– [Optional] The steps are described from the user's perspective 

(eg: turn left)

More details in CampusPaths 
handout Appendix

Automatic Dog Door Features

From "Head-First Object-Oriented Analysis & Design"

• The dog door opening must be at least 12" tall.
• A button on a remote control opens the dog 

door if it is closed, and closes it if it is open.
• Once the dog door has been opened, it closes 

automatically if the door isn't already closed.

http://www.cs.williams.edu/~freund/cs326/CampusPaths.html
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Use Cases

• Sequences of events that represent behaviors 
the functioning system should have.
– Actor-centric, not code-centric

• Benefits:
–Writing use-cases exposes details of expected 

functionality.
– Can incrementally elaborate (or shrink/remove) use-

cases until they are stable and sensible enough to 
implement.

– Can help guide initial coding.

Dog Door Use Case, 
Version 1

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the remote control.
4. The dog door opens.
5. Fido goes outside
6. Fido does his thing.
7. Fido goes back inside.
8. The door shuts automatically

Dog Door Use Case, 
Version 2
1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the remote control.
4. The dog door opens.
5. Fido goes outside
6. Fido does his thing.

6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3. Todd or Gina hears Fido barking.
6.4. Todd or Gina presses the button on the remote control.
6.5. The dog door opens.

7. Fido goes back inside.
8. The door shuts automatically

Optional Path: 
may or may 
not happen

Automatic Dog Door Feature List

From "Head-First Object-Oriented Analysis & Design"

• The dog door opening must be at least 12" tall.
• A button on a remote control opens the dog 

door if it is closed, and closes it if it is open.
• Once the dog door has been opened, it closes 

automatically if the door isn't already closed.
• Door opens automatically when Fido barks.
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Dog Door Use Case, 
Version 3

1. Fido barks to be let out.
2. The bark recognizer "hears" a bark.
3. The bark recognizer sends a request to

the door to open.
4. The dog door opens.
5. Fido goes outside
6. Fido does his thing.
6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3. The bark recognizer "hears" a bark.
6.4. The bark recognizer sends a request

to the door to open.
6.5. The dog door opens.

7. Fido goes back inside.
8. The door shuts automatically

2.1 Todd or Gina hears Fido barking.
3.1 Todd or Gina presses the button 

on the remote control.

6.3.1 Todd or Gina hears Fido barking.
6.4.1 Todd or Gina presses the button 

on the remote control.

Main Path Alternative Paths

Alternative Path: 
can replace steps 
on main path

Customer Purchase Example
http://ontolog.cim3.net/cgi-bin/wiki.pl?UseCasesSimpleTextExample
1. Customer browses through catalog and selects items to buy 
2. Customer goes to check out 
3. Customer fills in shipping information 
4. System presents full pricing information, including shipping 
5. Customer fills in credit card information 
6. System authorizes purchase 
7. System confirms sale immediately 
8. System sends confirming email to customer 
• Alternative: Authorization Failure 

– At step 6, system fails to authorize credit purchase 
– Allow customer to re-enter credit card information and re-try 

• Alternative: Regular Customer 
– 3a. System displays current shipping information, pricing information, and last four 

digits of credit card information 
– 3b. Customer may accept or override these defaults .  Return to primary scenario at 

step 6 

CampusPaths: Find Shortest Path

• Main Path:
1. User performs search gesture.
2. System identifies the buildings at start and end of 

gesture. Displays shortest path as a sequence of 
arrows and highlights the start/end buildings.

• Alternative Path:
2.1. The System recognizes that the gesture did not 

select two buildings. Any existing path on map 
disappears.

Finding the Right Use Cases

• Use feature lists, GUI sketches, etc.
• Focus on non-trivial features or behaviors.
• Features vs Use Case:
– Feature of a library book checkout application: 

"the ability to charge late fees for overdue books".
– Use-case: "return book and calculate late fee"

1. a patron returns a physical book,
2. the book would be scanned,
3. it would be marked as available in the database, and
4. a late fee if any would be computed and added to the 

patron's account.
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Format For Use Cases

• Title that is a capsule summary
• Main Body is the primary path for the use-case
– a numbered list of actions described in English

• Optional Alternate Paths
– other ways the use case could proceed

(take either 2. then 3., or take 2.1 then 3.1).

• Optional Optional Paths
– some steps that could be skipped (steps 6.1-6.5)

• Only include alt/opt paths if they give a more clear 
specification than making separate use-cases.

UI Sketches

• You don't have to make them pretty
– but it does help make the app feel real if you put 

some time into them

From: TBL
To: West

Walk N 10 feet to (x,y)
...
Walk .. ..  feet to (x,y)

Total Distance: 
650 ft

< Back

UI Sketches

• Carefully go through features and use-cases 
–make sure you covered features/uses with sketches.

• UI prototyping and storyboarding tools 
–many exist
– let you sequence a path through the different UIs
– help with Use Case sequences

Domain Analysis

• Understand the underlying domain of the app 
before you begin to design it.

• Examples:
–Music Streaming: Music file formats and Copyright 

rules 
– Restaurant: Orders, Menu Items, Tables, Payments, 

Receipts, Waitron, etc
– Social Network:  relationship groups? Friends? 

Family? Friends-of-Friends? Visibility?
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Iterative Process

• Real world: 
–multiple rounds of requirements gathering
– refine ideas, vision, features, use cases, etc.

• Continue to refine requirements even as move 
to later stages.
– early prototypes point to flaws in vision.
– features become more/less important.
– clients change their minds…

Requirements Summary

• Vision Statement
• Feature List
• Sketches/storyboards
• Use cases
• Domain Analysis
• Software Architecture (at least in 326…)


