The Goal
• Ensure system has acceptable
 – throughput
 – latency
 – memory footprint
 – network usage
 – ...
• For anticipated workload

When To Do Performance Tuning
• During design? Nope. But:
 – Understand algorithm running times
 • and make reasonable choices
 – Identify design tradeoffs that may impact performance (sorted vs. unsorted list, etc.)
 – Document choices you make, alternatives, assumptions about the workload
 • Always favor simple solutions until proven they are insufficient.
 • It is much easier to optimize a well-designed system than a poorly-designed system.

When To Do Performance Tuning
• During initial implementation? Nope. But:
 – Follow good programming discipline
 – Build abstractions so you can change reps later
 – Adhere to basic common sense:
 • don’t re-compute same value unnecessarily
 • don’t do more work than necessary
 • ...
• It is much easier to optimize a well-written system than a poorly-written system.
When To Do Performance Tuning

• When writing correctness tests? Nope.
 – Focus on correctness tests first

• It is much easier to optimize a correct system than an incorrect system.

Performance Tuning

• *Premature optimization is the root of all evil.*
 – Donald Knuth

• Only when you recognize that the system fails to meet desired performance goals

• Methodology is similar to debugging once a failure has occurred.

Experiment-Driven Methodology

• Measure the performance of the system before modification.
• Identify a bottleneck
 – part of the system that is critical for improving the performance.
• Modify the system to remove the bottleneck.
• Measure the performance of the system after modification.
 – improvement => adopt change
 – no improvement => revert to original

Reproducible Test Inputs

• Real Data (eg: Marvel Comics)
• Synthetic Data (eg: my "synthetic" graph)
 – Write a program to generate "fake data"
 – Mimics all relevant characteristics of real world
 – Better understanding of structure of data
 – Easier to create different size inputs, inputs w/ different features, etc.

• Typically a combination
• Being able to quickly write data generators is a handy skill.
Identifying Bottlenecks

- "90-10 Rule"
 - 90% of the time is spent in 10% of the code.
- How to find that 10%
 - Log messages
 - Timers/counters in code
 - Profiler
 - dynamic analysis to measure properties of program behavior at run time
 - where does the program spend time?
 - how is memory being used?
 - ...

Algorithmic Bottlenecks

- Implementation contains algorithms with inadequate Big-O run times.
- Example:
 - originally kept an array unsorted with O(n) search
 - change to a sorted array with O(log n) search
 - but at the cost of slower insertions...
- Requires you to know algorithm design and analysis basics.
- May need to change ADT internal reps, etc.

Implementation Bugs

- Defect leads to unnecessary computation.
- Example:
  ```swift
  func inTree(root: Tree, v : Int) -> Bool {
    if (v == root.value) {
      return true
    } else {
      let inLeft = inTree(root.left, v)
      let inRight = inTree(root.right, v)
      return inLeft || inRight
    }
  }
  ```
- Standard debugging techniques...

Bad Assumptions / Library Imps.

- Code you use may have different performance characteristics than you assumed.
 - Library call creates a new http connection every time, rather than reusing an existing connection
 - Creating UIBezierPaths becomes a bottleneck if you render a few thousand nodes in your GraphView
- Primitive ADTs may have limitations
 - Swift Sets/Dicts/Arrays are values
 - Copy-on-write strategy avoids a lot of copying
 - But how much are you paying for what's left?
Expensive Run-time Checks

- precondition/invariant assertions
- checkRep() calls

- Never delete checks
 - Add flag to selectively turn them off.
 - You will likely need to do this for SocialNetworks...

Running Profiler in XCode

Ctrl-Click Play Button next to Unit Test

Recording Controls
Run Timer
Track (CPU Usage)
Top of Trace/Detail
Detail Pan
Heaviest Stack Trace
Modify checkRep()...
Change From Set To MutableSet

Running App With Profiler