
1

CS 326
Software Methods

Stephen Freund

1

Why Is Programming So Hard?

Software is different from other artifacts
– We build general, reusable mechanisms
– Not much repetition, symmetry, or redundancy
– Large systems have millions of distinct complex parts

2

“Controlling complexity is the
essence of computer programming.”

-- Brian Kernighan
(UNIX, AWK, C, …)

3

Goals

• Primary focus: writing correct programs
–What does it mean for a program to be correct?
– How do we determine if a program is correct?
– How do we build correct programs?

• Will cover both principles and tools.

• Tools change, principles are forever...

4

2

Outcomes
• Better at:

– design
– writing
– debugging
– using development tools
– evaluating quality / behavior
– communication

• Can you convince yourself and others something is correct via precise,
coherent explanations?

• Essential skills regardless of what you do next

• Work hard. Have fun. Build nifty systems. 5

A Problem

“Complete this method so that it returns the
index of the max of the first n elements of
the array a.”
func indexOfMax(a: [Int], n: Int) -> Int {
…

}

6

A Problem

“Complete this method so that it returns the
index of the max of the first n elements of
the array a.”
func indexOfMax(a: [Int], n: Int) -> Int {
…

}

What should we ask about the specification?

Given (better) specification, how many
possible implementations are there?

7

Prerequisites
• Proficient in Java, eg:
– Sharing:

• Distinction between == and equals()
• Aliasing: multiple references to the same object

– Object-oriented programming:
• Inheritance and overriding
• Objects/values have a run-time type

– Subtyping
• Expressions have a compile-time type
• classes vs. interfaces

• Reasoning and proof techniques
• Basic Unix and OS X skills 8

3

Course Components
• Lecture
• Reading
• Written Homework
• Labs
• Final Project
• Midterm Exam

• CS 326 Web Page
• Honor Code 9

Resources
• The Pragmatic Programmer
– Thomas and Hunt (2019)
– Collection of best practices

• Class notes, additional readings

• Swift Language and API Docs:
– Swift Language
– https://developer.apple.com/documentation/

10

Pragmatic Programmer

• Advice from top-notch programmers
• Stuff all serious programmers should know
• Approachable but sometimes challenging
• Only partial overlap with lecture

• Keep up with reading
– Reading and contemplating design is essential
– Time investment that pays dividends in the long

run
11

Programming is Hard
• Despite decades of practice, still surprisingly

difficult to specify, design, implement, test,
and maintain even small, simple programs.

• Assignments will be reasonable if you apply
the techniques taught in class…
... but likely very difficult to do brute-force
... and almost certainly impossible (or at least
painful) unless you start early.

• Think before you type! 12

http://www.cs.williams.edu/~freund/cs326
https://csci.williams.edu/the-cs-honor-code-and-computer-usage-policy/
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/index.html
https://developer.apple.com/documentation/

4

Looking Ahead A Few Weeks

13

XCode

Specification

Abstraction

Testing

Debugging

Swift
git

Formal
Reasoning

iOS
Markdown

You Have Lab Today!

• Lab 0
• Set up lab environment
• Git
• Markdown
• Swift Tutorial

14

You Have Homework For Tues.

• HW 1
• Design algorithm to meet a simple

specification
• Working up to reasoning about large

designs

15

Motivation/Structure of CS 326
• My own experiences
– 25+ years of building systems (successes/failures)
– 20 years of advising student projects
–My research on languages and defect detection

• Hard work, course development, and insights
of many others
–Michael Ernst, Hal Perkins, Dan Grossman, David

Notkin, Zach Tatlock, Paul Hegarty, Scott Smith

16

http://www.cs.williams.edu/~freund/cs326/IntroToSwift.html
http://www.cs.williams.edu/~freund/cs326/WritingAlgorithms.html
http://www.cs.williams.edu/~freund/cs326/WritingAlgorithms.html

