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CS	326
Formal	Reasoning:	Loops

Stephen	 Freund
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Program	Verification

• Weakest	Preconditions
– most	permissive	assumptions	to	ensure	postcondition is	
satisfied.

• Verifying	functional	correctness

// requires P
// ensures Q

method test(...) {
S

}

Prove:
P	=>	wp(S,	Q)

Example	in	Dafny
method Test(x : int, y : int) returns (c :Point?)  
requires P;  
ensures c != null;

{  

c := null;  
var z;  
if y < 0 {
z := -2 * y;

} else {

z := x;
}  
if z > 10 {
c := new Point(z,y);

}

}

Prove: P	=>	wp(...,	 c	!=	null)

Loops

{	n	≥	0	}
i = 0;
y = 0; 
{	P:	n	≥	0	∧ i =	0	∧ y	=	0	}
while(i != n) {
i = i+1;
y = y+i; 

}
{	Q:	y	=	sum(1,n)	}
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Loops

{	n	≥	0	}
i = 0;
y = 0;
{	P:	n	≥ 0	∧ i =	0	∧ y	=	0	}
{	invariant I	:	...	}
while(i != n) {
i = i+1;
y = y+i; 

}
{	Q:	y	=	sum(1,n)	}

Loops	in	Hoare	Logic
{	n	≥0	}
i = 0;
y = 0; 
{	P:	n	≥ 0	∧ i =	0	∧ y	=	0	}
{	invariant:	y	=	sum(1,i)	}
while(i != n) {
{	y	=	sum(1,i)	∧ i !=	n	}
i = i+1;
{	y	=	sum(1,i-1)	}
y = y+i; 
{	y	=	sum(1,i-1)	+	i =	sum(1,i)	}

}
{	y	=	sum(1,i)	∧ i =	n	}	=>
{	Q:	y	=	sum(1,n)	}

{P}
while(B) {
S 

}
{Q}

Pick	invariant	I such	that:
1. P => I
2. {I ∧ B}S{I}
3. (I ∧ !B) => Q 

Version	2
{	n	≥0	}
i = 1;
y = 0; 
{	P:	n	≥ 0	∧ i =	1∧ y	=	0	}
{	invariant:	y	=	sum(1,i)	}
while(i != n) {
{	y	=	sum(1,i)	∧ i !=	n	}
i = i+1;
{	y	=	sum(1,i-1)	}
y = y+i; 
{	y	=	sum(1,i-1)	+	i =	sum(1,i)	}

}
{	y	=	sum(1,i)	∧ i =	n	}	=>
{	Q:	y	=	sum(1,n)	}

{P} 
while(B) {
S 

}
{Q}

Pick	invariant	I such	that:
1. P => I
2. {I ∧ B}S{I}
3. (I ∧ !B) => Q 

Version	2
{	n	≥0	}
i = 1;
y = 0; 
{	P:	n	≥ 0	∧ i =	1∧ y	=	0	}
{	invariant:	y	=	sum(1,i-1)	}
while(i != n) {
{	y	=	sum(1,i-1)	∧ i !=	n	}
i = i+1;
{	y	=	sum(1,i-2)	}
y = y+i; 
{	y	=	sum(1,i-2)	+	i =	sum(1,i-1)	}

}
{	y	=	sum(1,i-1)	∧ i =	n	}	=>
{	Q:	y	=	sum(1,n)	}

{P} 
while(B) {
S 

}
{Q}

Pick	invariant	I such	that:
1. P => I
2. {I ∧ B}S{I}
3. (I ∧ !B) => Q 
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Version	3
{	n	≥0	}
i = 1;
y = 0; 
{	P:	n	≥ 0	∧ i =	1∧ y	=	0	}
{	invariant:	y	=	sum(1,i-1)	}
while(i != n + 1) {
{	y	=	sum(1,i-1)	∧ i !=	n	+	1 }
i = i+1;
{	y	=	sum(1,i-2)	}
y = y+i; 
{	y	=	sum(1,i-2)	+	i =	sum(1,i-1)	}

}
{	y	=	sum(1,i-1)	∧ i =	n	+	1 }	=>
{	Q:	y	=	sum(1,n)	}

{P} 
while(B) {
S 

}
{Q}

Pick	invariant	I such	that:
1. P => I
2. {I ∧ B}S{I}
3. (I ∧ !B) => Q 

This	line	is	wrong!
To	fix,	we	need	to	flip	the	two	
statements	in	the	loop	– see	

Version	4	next.

Version	4:	Self	Check
{	n	≥0	}
i = 1;
y = 0; 
{	P:	n	≥ 0	∧ i =	1	∧ y	=	0	}
{	invariant:	y	=	sum(1,i-1)	}
while(i != n + 1) {
{	y	=	sum(1,i-1)	∧ i !=	n	}
y = y+i; 
{	y	=	sum(1,i-2)	}
i = i+1;
{	y	=	sum(1,i-2)	+	i =	sum(1,i-1)	}

}
{	y	=	sum(1,i-1)	∧ i =	n	}	=>
{	Q:	y	=	sum(1,n)	}

{P} 
while(B) {
S 

}
{Q}

Pick	invariant	I such	that:
1. P => I
2. {I ∧ B}S{I}
3. (I ∧ !B) => Q 

Too	Strong?	Too	Weak?	Just	Right?

• Loop	 invariant	is	too	strong:	
– may	not	hold	on	entry.
– may	not	be	preserved	by	body

• Loop	 invariant	is	too	weak:	
– can't	prove	what	you	want	after	the	loop

• No	automatic	procedure	 for	conjuring	a	loop-
invariant...
– Think	about	invariant	while	writing	the	code
– If	proof	doesn’t	work,	invariant	or	code	or	both	
may	need	work

Methodology

1. Decide	on	 the	invariant	first
– What	describes	the	milestone	of	each	iteration?

2. Write	a	loop	body	 to	maintain	the	invariant
3. Write	the	loop	test	so	"false	implies	

postcondition"
4. Write	initialization	code	to	establish	invariant
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Methodology

Set	max to	hold	 the	largest	value	in	array	items

1. Decide	loop	invariant	first:

max holds	largest	value	in	range	0..k-1 of	items

Example

Set	max to	hold	 the	largest	value	in	array	items

2. Write	a	loop	body	to	maintain	the	invariant

//	I:	max	holds	largest	value	in	items[0..k-1]
while(  ) {

//	I	holds
if(max < items[k]) {

max = items[k]; //	breaks	I	temporarily
} 
//	max	holds	largest	value	in	items[0..k]
k = k+1; //	I	holds	again

}

Example

Set	max to	hold	 the	largest	value	in	array	items

3. Write	the	loop	test	so	false-implies-postcondition
//	I:	max	holds	largest	value	in	items[0..k-1]
while(k != items.count) {

//	I	holds
if(max < items[k]) {

max = items[k]; //	breaks	I	temporarily
} 
//	max	holds	largest	value	in	items[0..k]
k = k+1; //	I	holds	again

}
//	max	holds	largest	value	in	items[0..items.count-1]

Example

Set	max to	hold	 the	largest	value	in	array	items

4. Write	initialization	code	to	establish	invariant
k	=	1;	max	=	items[0];
//	I:	max	holds	largest	value	in	items[0..k-1]
while(k != items.count) {

//	I	holds
if(max < items[k]) {

max = items[k]; //	breaks	I	temporarily
} 
//	max	holds	largest	value	in	items[0..k]
k = k+1; //	I	holds	again

}
//	max	holds	largest	value	in	items[0..items.count-1]
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Example

Edge	case!	

// pre: items.count > 0
k	=	1;	max	=	 items[0];
//	I:	max	holds	largest	value	in	items[0..k-1]
while(k != items.count) {

//	I	holds
if(max < items[k]) {

max = items[k]; //	breaks	I	temporarily
} 
//	max	holds	largest	value	in	items[0..k]
k = k+1; //	I	holds	again

}
//	max	holds	largest	value	in	items[0..items.count-1]

Quotient	and	Remainder
Set	q to	be	the	quotient	of	x/y and	r to	be	the	remainder

{Pre:	x	>	0	∧ y	>	0}
q = 0; r = x;
{Invariant:	q*y	+	r	=	x	∧ 0	≤	r	}
while (y <= r) {
q = q + 1; 
r = r – y;

}
{Post:	 x	=	q*y	+	r		∧ 0	≤	r	<	y	 }

Dutch	National	Flag	(classic)
Given	an	array	of	red,	white,	and	blue	pebbles,	
sort	the	array	so	the	red	pebbles	are	at	the	front,	
white	are	in	the	middle,	and	blue	are	at	the	end
– [Can	only	swap	pebbles,	not	count	them...]

Edsgar Dijkstra

Pre- and	Post-conditions

Precondition:	Any	mix	of	red,	white,	and	blue

Postcondition:	
– Red,	then	white,	then	blue
– Number	of	each	color	same	as	in	original	array

Mixed	colors:		red,	white,	blue

Red White Blue
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Some	Potential	Invariants

Red White Blue Mixed

Red White BlueMixed

Red White BlueMixed

Red White BlueMixed

More	Precise
• Precondition:	 	a contains	red,white,blue

• Postcondition:	
0 <= i <= j < a.count

∧ a[0..i-1] is red
∧ a[i..j-1] is white
∧ a[j..a.count-1] is blue

• Invariant:	
0 <= i <= j <= k <= a.count

∧ a[0..i-1] is red
∧ a[i..j-1] is white
∧ a[k..a.count-1] is blue

Red White BlueMixed

i j													k

The	Code
i = 0; 
j = 0; 

k = a.count;
while (j!=k) {
if(a[j] == White) {

j = j+1;
} else if (a[j] == Blue) {

swap(a,j,k-1);
k = k-1;

} else { // a[j] == Red
swap(a,i,j)
i = i+1;

j = j+1;
}

}

Red White BlueMixed

i j													k

Termination

• Quotient-and-remainder
– r (starts	positive,	gets	strictly	smaller)

• Binary	search
– size	of	range	still	considered

• Dutch-national-flag
– size	of	range	not	yet	partitioned	(k-j)

• Search	in	a	linked	list
– length	of	list	not	yet	considered
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Recap
{ P }
Point c = null;

int z;
if (y < 0) {

z = -2*y;

} else {
z = x;

}
if (z > 10) {

c = new Point(z,y); 

}
{ Q: c != null }

What	 is	the	weakest
precondition P that	
ensures	postcondition Q?

From	 last	 time:
• weakest	 ==	most	

permissive
• strongest	==	 most	

restrictive

When	to	use	proofs	for	loops

• Overkill	for	“obvious”	loops:
– for (name in friends) {…}

• Use	logical	reasoning:
– When	intermediate	state	(invariant)	is	unclear	or	edge	cases	
are	tricky	or	you	need	inspiration,	etc.

– As	an	intellectual	debugging	tool
• What	exactly is	the	invariant?		
• Is	it	satisfied	on	every	iteration?
• Are	you	sure?	Write	code	to	check?
• Did	you	check	all	the	edge	cases?		
• Are	there	preconditions	you	did	not	make	explicit?

Termination

• Two	kinds	of	loops
– Those	we	want	to	always	terminate	(normal	case)
– Those	that	may	conceptually	run	forever	(e.g.,	web-server)

• So,	proving	a	loop	correct	usually	also	requires	proving	
termination
– We	haven’t	been	proving	this:	might	just	preserve	invariant	
forever	without	test	ever	becoming	false

– Our	Hoare	triples	say	if loop	terminates,	postconditionholds

• How	to	prove	termination	(variants	exist):	
– Map	state	to	a	natural	number	somehow	(just	“in	the	proof”)
– Prove	the	natural	number	goes	down	on	every	iteration	
– Prove	test	is	false	by	the	time	natural	number	gets	to	0
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Why	Reason	About	Programs?
• Essential	complement	to	testing
– Testing	shows	specific	result	for	a	specific	input

• Proof	shows	general	result	for	all	inputs
– Can	only	prove	correct	code,	proving	uncovers	bugs
– Provides	deeper	understanding	of	why	code	is	correct

• Precisely	stating	assumptions	is	essence	of	spec
– “Callers	must	not	pass	null	as	an	argument”
– “Callee will	always	return	an	unaliased object”

Our	Approach

• Hoare	Logic,	an	approach	developed	in	the	70’s
• Rarely	use	Hoare	logic	explicitly
– often	overkill	for	simple	code
– shines	for	developing	code	with	subtle	invariants

• Ideal	for	introducing	program	reasoning	
foundations
– How	does	logic	“talk	about”	program	states?
– How	can	program	execution	“change	what’s	true”?
– What	do	“weaker”	and	“stronger”	mean	in	logic?

Weakest	Precondition

wp(x	=	e,	Q)	 Q[x :=	e]
wp(S1;S2,	Q)	 wp(S1,wp(S2,Q))
wp(if	b	S1	else	S2,	Q)	 (b	∧ wp(S1,Q))	∨

(!b	∧ wp(S2,Q))


