
Lab 7
Due 9 April

Handout 9
CSCI 136: Spring, 2007

2 April

The Two Towers

1 Short Answer

Write an iterator that iterates over the characters of a String. Repeated calls to the iterator’s next()
method will return the first character of the string, then the second character, and so on.

More specifically, you are to complete the design of the class CharacterIterator and implement

the listed constructor and methods:

public class CharacterIterator extends AbstractIterator<Character> {

public CharacterIterator(String str) { ... }
public Character next() { ... }
public boolean hasNext() { ... }
public void reset() { ... }
public Character get() { ... }

}

The Character class is the wrapper class for char values. You use it much like we use Integer
for int values. The Java compiler will automatically convert char values to Character objects when

necessary. Hand in your solution at the beginning of lab on Wednesday.

2 Lab Program

(This is a version of the Lab from Chapter 8, modified to use generic classes.)

Goal. To solve a difficult problem using Iterators.

Discussion. Suppose that we are given n uniquely sized cubic blocks and that each block has a face

area between 1 and n. If we build two towers by stacking these blocks, how close can we get their

heights? The following two towers built by stacking 15 blocks, for example, differ in height by only 129

millions of an inch (each unit is one-tenth of an inch):

1



Still, this stacking is only the second-best solution! To find the best stacking, we could consider all

the possible configurations. We do know one thing: the total height of the two towers is computed by

summing the heights of all the blocks:

h =

n∑

i=1

√
i

If we consider all the subsets of the n blocks, we can think of the subset as the set of blocks that

make up, say, the left tower. We need only keep track of that subset that comes closest to h/2 without

exceeding it.

In this lab, we will represent a set of n distinct objects by a Vector, and we will construct an

Iterator that returns each of the 2
n subsets.

Procedure The trick to understanding how to generate a subset of n values from a Vector is to first

consider how to generate a subset of indices of elements from 0 to n − 1. Once this simpler problem is

solved, we can use the indices to help us build a Vector (or subset) of values identified by the indices.

There are exactly 2
n subsets of values 0 to n − 1. We can see this by imagining that a coin is tossed

n times—once for each value—and the value is added to the subset if the coin flip shows a head. Since

there are 2 × 2 × · · · × 2 = 2
n different sequences of coin tosses, there are 2

n different sets.

We can also think of the coin tosses as determining the values for n different digits in a binary

number. The 2
n different sequences generate binary numbers in the range 0 through 2

n − 1. Given

this, we can see a line of attack: count from 0 to 2
n − 1 and use the binary digits (bits) of the number to

determine which of the original values of the Vector are to be included in a subset. Computer scientists

work with binary numbers frequently, so there are a number of useful things to remember:

• An int type is represented by 32 bits. A long is represented by 64 bits. For maximum flexibility,

it would be useful to use long integers to represent sets of up to 64 elements.

• The arithmetic shift operator << can be used to quickly compute powers of 2. The value 2
i can

be computed by shifting a unit bit (1) i places to the left. In Java we write this 1L << i. This

works only for nonnegative, integral powers. The constant 1L is the value one stored as a 64-bit

long value. Using this constant ensures that we are using a 64-bit shift operation resulting in a

long value instead of a 32-bit operation resulting in an int value.

• The “bitwise and” of two numbers can be used to determine the value of a single bit in a number’s

binary representation. To retrieve bit i of a long integer m we need only compute m & (1L <<
i).

Armed with this information, the process of generating subsets is fairly straightforward. One line

of attack is the following:

1. Construct a new extension to the AbstractIterator class. (By extending the AbstractIterator
we support both the Iterator and Enumeration interfaces.) This new class should have a con-

structor that takes a Vector as its sole argument. Subsets of this Vector will be returned as

the Iterator progresses.

Name this class SubsetIterator, and be sure to import structure5.* and java.util.Iterator
at the top of your file. Your SubsetIterator should be completely generic. It should know noth-

ing about the values it is iterating over. Thus, the declaration will be

public class SubsetIterator<E> extends AbstractIterator<Vector<E>>

2. Internally, a long value is used to represent the current subset. This value increases from 0 (the

empty set) to 2
n − 1 (the entire set of values) as the Iterator progresses. Write a reset method

that resets the subset counter to 0.

3. Write a hasNext method that returns true if the current value is a reasonable representation

of a subset.

2



4. Write a get method that returns a new Vector of values that are part of the current subset. If

bit i of the current counter is 1, element i of the original Vector is included in the resulting

subset Vector.

5. Write a next method. Remember it returns the current subset before incrementing the counter.

6. For an Iterator you would normally have to write a removemethod. If you extend the AbstractIterator
class, this method is provided and will do nothing (this is reasonable).

You can now test your new SubsetIterator by having it print all the subsets of a Vector of

values. For example, write a main method for your SubsetIterator that creates a Vector with the

Integers from 0 through 7, creates a SubsetIterator with this Vector, and then prints out all

subsets returned. Make sure you end up with all 256 different subsets printed.

To solve the two-towers problem, write a main method in a new class TwoTowers that inserts the

values
√

1,
√

2, ...,
√

n into a Vector<Double> object. (To compute the square root of n, you can use

the Math.sqrt(n) method.) A SubsetIterator is then used to construct 2
n subsets of these values.

The values of each subset are summed, and the sum that comes closest to, but does not exceed, the

value h/2 is remembered. After all the subsets have been considered, print the best solution.

Thought Questions. Consider the following questions as you complete the lab:

1. What is the best solution to the 15-block problem?

2. How long does it take your program to find the answer to the 20-block problem? You may time

programs with the Unix time command, as in the following:

time java -Xint TwoTowers

(The “-Xint” flag turns off some optimizations in the JVM and will give you more reliable results.)

Based on the time taken to solve the 20-block problem, about how long do you expect it would

take to solve the 21-block problem? What is the actual time? How about the 25-block problem?

Do these agree with your expectations, given the time complexity of the problem? What about

the 40- and 50-block problems? (These will take a very long time. Just estimate based on the run

times of the smaller problems).

3. This method of exhaustively checking the subsets of blocks will not work for very large problems.

Consider, for example, the problem with 50 blocks: there are 2
50 different subsets. One approach

is to repeatedly pick and evaluate random subsets of blocks (stop the computation after 1 second

of elapsed time, printing the best subset found). How would you implement randomSubset, a

new SubsetIterator method that returns a random subset?

2.1 Deliverables

Create and submit a tar file lab7.tar that includes the following before midnight on the due date:

1. Your SubsetIterator.java and TwoTowers.java files.

2. A README file that includes your answers to the three thought questions.

To create a tar file, use the “tar” command to archive the full contents of a directory into a single

file. For example, the command tar -cf lab7.tar lab7dir creates a file called lab7.tar con-

taining the full contents of the directory lab7dir. You can then run turnin -c 136 lab7.tar to

submit the tar file.

As in all labs, you will be graded on design, documentation, style, and correctness. Be sure to

document your program with appropriate comments, including a general description at the top of the

file, a description of each method with pre- and post-conditions where appropriate. Also use comments

and descriptive variable names to clarify sections of the code which may not be clear to someone trying

to understand it.

3


