

 1

Squashing the Bugs: Tools for
Building Better Software

Stephen Freund
Williams College

The Blue Screen of Death (BSOD)

USS Yorktown

 Smart Ship
– 27 Pentium-based PCs
– Windows NT 4.0

 September 21, 1997:
– data entry error caused a "Divide-By-0" error
– entire system failed
– ship dead in the water for over 2 hours

[Wired 1997]

 2

French Guyana, June 4, 1996
$800 million software failure

Mars Climate Orbiter

Purpose: Collect data.
Relay signals from Mars
Polar Lander ($165M)

Failure: Smashed into
Mars (1999)

Bug: Failed to convert
English to metric units

Mars Polar Lander

Purpose: Lander to study
the Mars climate ($120M)

Failure: Smashed into
Mars (2000)

Bug: Spurious signals from
sensors caused premature
engine shutoff

Therac25 Radiation Therapy

Purpose: Computer-
controlled radiation
therapy machine

Failure: gave fatal
radiation doses to 2
cancer patients (1986)

Bug: timing bug

USS Vincennes

Failure: Shot down an
Airbus jet that was
mistaken for a F-14.
290 people died. (1988)

Bug: tracking software
displayed cryptic and
misleading output

Software Complexity
Huge costs

– $60 billion / year [NIST 2003]
– convenience, security, safety

Why is it so hard to get right?
– systems are too large to understand completely
– small mistakes can compromise whole system
– many failure modes

 unreliable network, media, hardware, users,...
 half of code is to handle failures

– programs evolve over time

[Tanenbaum,Wheeler]

Windows 3.1
Windows NT

Windows NT 4.0

Windows 2000

Windows XP

Windows
Vista

Red Hat Linux

[Tanenbaum,Wheeler]

Windows

400 horses
100 microprocessors

 3

[Lowry (NASA) 2002]

Mars Polar Lander
Mars Climate Orbiter
Mars Rover: Spirit
Mars Rover: Opportunity

Next Generation Rovers

Voyager (1977)
Galileo (1989)
Cassini (1997)

Managing Software Complexity

Process
Tools

People

"Mythical Man Month"
[Brooks 75]

Software Processes
Organization of large software project

– other examples: army, company, college admin
– planning, responsibilities, interactions

 Benefits
– avoid miscommunication, misunderstandings
– predict time and cost
– recognize problems early

 Process failures do happen (frequently...)
– Air Traffic Control system, $2.6Billion, 1983-1996

Waterfall Model

Requirements

System Design

Implementation
and Unit Testing

Integration and
System Testing

Maintenance

Cost to Fix Bugs

Defect Density in Delivered Software

[Davis-Mullaney 2003]

Managing Software Complexity

Process
Tools

People

 4

Computer Architecture

CPU

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

...

10100100
00000000
00000001
11111111

11001101
01001000
10011001
10001111

...

Computer Architecture

CPU

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

...

'A'
0
1
-1

store 0, $(2)

store 1, $(3)

cmp $(3), 5

bgt 13

...

6: store 0, $(2)
7: store 1, $(3)
8: cmp $(3), 5
9: bgt 13
10: add $(3), $(2)
11: add 1, $(3)
12: goto 8
13: ...

High-level programming languages:
– hide details of hardware
– simplify programming process

 Can add language features to avoid mistakes

store 0, $(2)
store 1, $(3)
cmp $(3), 5
bgt 13
add $(3), $(2)
add 1, $(3)
goto 8
...

sum = 0;
i = 1;
while (i <= 5) {
 sum = sum + i;
 i = i + 1;
}

Abstraction In Programming Languages

Compiler

Memory Management
Must allocate and free

memory for arrays in C:
name = new char[8];
get_string(name);
authenticate(name);
free(name);

Memory Management
Must allocate and free

memory for arrays in C:
name = new char[8];
get_string(name);
authenticate(name);
free(name);

'f'
'r'
'e'
'u'
'n'
'd'

name

Memory Management
 Potential errors:

– forget to free memory
– free memory twice
– free too early?
– overwrite memory block

'f'
'r'
'e'
'u'
'n'
'd'

name

 5

 Garbage Collection
Never explicitly free memory

name = new char[8];
get_string(name);
authenticate(name);

 Program periodically pauses to find and reclaim
unused memory

Used in Java, C#, Python, ...

Tradeoffs in Design
No free lunch

– features impact performance / expressiveness
– can be prohibitively expensive (or impossible!)

Other features
– object-oriented languages / modules
– exception handling
– threads

Program Checking
Design algorithm to automatically identify errors

 Example 1: type errors
 WebPage w = new WebPage("http://...");
int x = w - 3;  BAD

 String s = "hello";
 if (s < 100) ...  BAD

 Example 2: buffer overruns in C programs

Buffer Overruns in C

name = new char[8];
get_string(name);
authenticate(name);
free(name);

'f'
'r'
'e'
'u'
'n'
'd'

10
-1
0

500

name

Buffer Overruns in C
'P'
'u'
'r'
'p'
'l'
'e'
' '
'C'

10
'w'
'o'

500

namename = new char[8];
get_string(name);
authenticate(name);
free(name);

Dynamic Monitors
 Check program as it executes

– example: buffer overruns

 Pros:
– identify cause of bug faster than testing
– easy to add to development process

 Cons:
– coverage
– performance
– must run whole program

 6

Static Checkers

 Pros:
– catch errors sooner (even before running)
– check program for all inputs / all possible paths

 Cons:

Set of All Programs

Checker
Source
Code

Good

Bad

Static Checkers

 Pros:
– catch errors sooner (even before running)
– check program for all inputs / all possible paths

 Cons:
– cannot distinguish "good" from "bad" exactly
– computers cannot compute everything

 undecidability of the Halting Problem [Turing 1936]

Set of All Programs

Checker
Source
Code

Good

Bad

Static Checkers

 Pros:
– catch errors sooner (even before running)
– check program for all inputs / all possible paths

 Cons:
– cannot distinguish "good" from "bad" exactly
– computers cannot compute everything

 undecidability of the Halting Problem [Turing 1936]

Set of All Programs

Checker
Source
Code

Verifiably
Good

Bad or
Not Verifiable

Multi-Processors and Multi-Core Chips

CPU

CPU

core
#1

core
#2

CPU

Thread 1

Thread 2
data

Web Server

network

Concurrent Programming With Threads
Decompose into pieces that run in parallel
 Improve throughput

Demo

 7

Multithreaded Program Execution

Thread 1

 ...
 t1 = bal;
 bal = t1 + 100;

 ...

Thread 2

 ...
 t2 = bal;
 bal = t2 - 100;

 ...

 o o
t2=bal bal=t2-100t1=bal bal=t1+100

 o o obal=500 bal=500

 o
t2=bal bal=t2-100t1=bal bal=t1+100

 o o obal=500 bal=400 o

Race condition

Multithreaded Program Execution

 o o t2=bal bal=t2-100t1=bal bal=t1+100
 o o obal=500 bal=500

 o
t2=bal bal=t2-100t1=bal bal=t1+100

 o o obal=500 bal=400 o

Race Conditions
 Common
Hard to find via testing

– scheduler dependent
Memory, files, printers, ...

2003 Blackout ($6 Billion) Mars Rovers

Therac-25

Preventing Race Conditions Using Locks

o o o o o o o o o

Thread 1
 acquire(m);
 t1 = bal;
 bal = t1 + 100;
 release(m);

Thread 2
 acquire(m);
 t2 = bal;
 bal = t2 - 100;
 release(m);

Preventing Race Conditions Using Locks

o o o o o o o o o

Thread 1
synchronized(m) {
 t1 = bal;
 bal = t1 + 100;
}

Thread 2
synchronized(m) {
 t2 = bal;
 bal = t2 - 100;
}

Demo

 8

Checkers For Race Conditions
int bal; //# guarded_by m

Good:
Bad:

Tools: Eraser [Savage et al. 97], RccJava, ...

Thread 1

synchronized(m) {
 t1 = bal;
 bal = t1 + 100;
}

Thread 2

synchronized(m) {
 t2 = bal;
 bal = t2 - 100;
}

Threads always hold m when accessing bal
Thread accesses bal without holding m

 RccJava [with Flanagan (UCSC), Peter Applegate '03]

 Found bugs in many pieces of software
– commercial products, Java libraries, web servers
– false positive rate of 75-80%

 benign races, other forms of synchronization
 better than not finding errors

Statically Checking Real Systems

Annotated
Java

Program
RccJava

Warnings

OK!

java.util.Vector

class Vector {
 Object elementData[] // guarded_by this
 int elementCount // guarded_by this

 synchronized int lastIndexOf(Object elem, int n) {
 for (int i = n ; i >= 0 ; i--)

 if (elem.equals(elementData[i])) return i;
 return -1;
 }

 int lastIndexOf(Object elem) {
 return lastIndexOf(elem, elementCount - 1); // race!
 }

 synchronized void trimToSize() { ... }
 synchronized boolean remove(int index) { ... }
}

2

a b
0 1 2

java.util.Vector

class Vector {
 Object elementData[] // guarded_by this
 int elementCount // guarded_by this

 synchronized int lastIndexOf(Object elem, int n) {
 for (int i = n ; i >= 0 ; i--)

 if (elem.equals(elementData[i])) return i;
 return -1;
 }

 int lastIndexOf(Object elem) {
 return lastIndexOf(elem, elementCount - 1); // race!
 }

 synchronized void trimToSize() { ... }
 synchronized boolean remove(int index) { ... }
}

1

a
0

Demo

Atomicity Violations
int bal; //# guarded_by m

Thread 1

 synchronized(m) {
 t1 = bal;
 }

 synchronized(m) {
 bal = t1 + 100;
 }

Thread 2

 synchronized(m) {
 t2 = bal;
 bal = t2 - 100;
 }

o o o o o o o o o o o

 9

Atomicity Violations
int bal; //# guarded_by m

Thread 1

atomic {
 synchronized(m) {
 t1 = bal;
 }

synchronized(m) {
 bal = t1 + 100;
 }
}

Thread 2

atomic {
 synchronized(m) {
 t2 = bal;
 bal = t2 - 100;
 }
}

Unannotated
Java

Program

atomicity
inference

data race
inference

Atomicity
Warnings

Program with
Atomicity

Annotations

Bohr
 Compute atomic annotations automatically
 Identify methods that may suffer interference
With Masha Lifshin '05

Bohr

The (Long) Road to Reliable Software
 Bugs are a real problem
 Checking tools will improve life for everyone
 Industry starting to adopt checkers

 Lots of problems (and fun) left
– tools often hard to use, imprecise
– simple tools pave way for more sophisticated
– need teachable design methodologies

Thanks
 Pete Applegate '03
Masha Lifshin '05
 Cormac Flanagan (UCSC)
Martín Abadi (UCSC and Microsoft)
Shaz Qadeer (Microsoft)

NSF/NASA HDCCSR Program

