

 1

Squashing the Bugs: Tools for
Building Better Software

Stephen Freund
Williams College

The Blue Screen of Death (BSOD)

USS Yorktown

 Smart Ship
– 27 Pentium-based PCs
– Windows NT 4.0

 September 21, 1997:
– data entry error caused a "Divide-By-0" error
– entire system failed
– ship dead in the water for over 2 hours

[Wired 1997]

 2

French Guyana, June 4, 1996
$800 million software failure

Mars Climate Orbiter

Purpose: Collect data.
Relay signals from Mars
Polar Lander ($165M)

Failure: Smashed into
Mars (1999)

Bug: Failed to convert
English to metric units

Mars Polar Lander

Purpose: Lander to study
the Mars climate ($120M)

Failure: Smashed into
Mars (2000)

Bug: Spurious signals from
sensors caused premature
engine shutoff

Therac25 Radiation Therapy

Purpose: Computer-
controlled radiation
therapy machine

Failure: gave fatal
radiation doses to 2
cancer patients (1986)

Bug: timing bug

USS Vincennes

Failure: Shot down an
Airbus jet that was
mistaken for a F-14.
290 people died. (1988)

Bug: tracking software
displayed cryptic and
misleading output

Software Complexity
Huge costs

– $60 billion / year [NIST 2003]
– convenience, security, safety

Why is it so hard to get right?
– systems are too large to understand completely
– small mistakes can compromise whole system
– many failure modes

 unreliable network, media, hardware, users,...
 half of code is to handle failures

– programs evolve over time

[Tanenbaum,Wheeler]

Windows 3.1
Windows NT

Windows NT 4.0

Windows 2000

Windows XP

Windows
Vista

Red Hat Linux

[Tanenbaum,Wheeler]

Windows

400 horses
100 microprocessors

 3

[Lowry (NASA) 2002]

Mars Polar Lander
Mars Climate Orbiter
Mars Rover: Spirit
Mars Rover: Opportunity

Next Generation Rovers

Voyager (1977)
Galileo (1989)
Cassini (1997)

Managing Software Complexity

Process
Tools

People

"Mythical Man Month"
[Brooks 75]

Software Processes
Organization of large software project

– other examples: army, company, college admin
– planning, responsibilities, interactions

 Benefits
– avoid miscommunication, misunderstandings
– predict time and cost
– recognize problems early

 Process failures do happen (frequently...)
– Air Traffic Control system, $2.6Billion, 1983-1996

Waterfall Model

Requirements

System Design

Implementation
and Unit Testing

Integration and
System Testing

Maintenance

Cost to Fix Bugs

Defect Density in Delivered Software

[Davis-Mullaney 2003]

Managing Software Complexity

Process
Tools

People

 4

Computer Architecture

CPU

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

...

10100100
00000000
00000001
11111111

11001101
01001000
10011001
10001111

...

Computer Architecture

CPU

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

...

'A'
0
1
-1

store 0, $(2)

store 1, $(3)

cmp $(3), 5

bgt 13

...

6: store 0, $(2)
7: store 1, $(3)
8: cmp $(3), 5
9: bgt 13
10: add $(3), $(2)
11: add 1, $(3)
12: goto 8
13: ...

High-level programming languages:
– hide details of hardware
– simplify programming process

 Can add language features to avoid mistakes

store 0, $(2)
store 1, $(3)
cmp $(3), 5
bgt 13
add $(3), $(2)
add 1, $(3)
goto 8
...

sum = 0;
i = 1;
while (i <= 5) {
 sum = sum + i;
 i = i + 1;
}

Abstraction In Programming Languages

Compiler

Memory Management
Must allocate and free

memory for arrays in C:
name = new char[8];
get_string(name);
authenticate(name);
free(name);

Memory Management
Must allocate and free

memory for arrays in C:
name = new char[8];
get_string(name);
authenticate(name);
free(name);

'f'
'r'
'e'
'u'
'n'
'd'

name

Memory Management
 Potential errors:

– forget to free memory
– free memory twice
– free too early?
– overwrite memory block

'f'
'r'
'e'
'u'
'n'
'd'

name

 5

 Garbage Collection
Never explicitly free memory

name = new char[8];
get_string(name);
authenticate(name);

 Program periodically pauses to find and reclaim
unused memory

Used in Java, C#, Python, ...

Tradeoffs in Design
No free lunch

– features impact performance / expressiveness
– can be prohibitively expensive (or impossible!)

Other features
– object-oriented languages / modules
– exception handling
– threads

Program Checking
Design algorithm to automatically identify errors

 Example 1: type errors
 WebPage w = new WebPage("http://...");
int x = w - 3; BAD

 String s = "hello";
 if (s < 100) ... BAD

 Example 2: buffer overruns in C programs

Buffer Overruns in C

name = new char[8];
get_string(name);
authenticate(name);
free(name);

'f'
'r'
'e'
'u'
'n'
'd'

10
-1
0

500

name

Buffer Overruns in C
'P'
'u'
'r'
'p'
'l'
'e'
' '
'C'

10
'w'
'o'

500

namename = new char[8];
get_string(name);
authenticate(name);
free(name);

Dynamic Monitors
 Check program as it executes

– example: buffer overruns

 Pros:
– identify cause of bug faster than testing
– easy to add to development process

 Cons:
– coverage
– performance
– must run whole program

 6

Static Checkers

 Pros:
– catch errors sooner (even before running)
– check program for all inputs / all possible paths

 Cons:

Set of All Programs

Checker
Source
Code

Good

Bad

Static Checkers

 Pros:
– catch errors sooner (even before running)
– check program for all inputs / all possible paths

 Cons:
– cannot distinguish "good" from "bad" exactly
– computers cannot compute everything

 undecidability of the Halting Problem [Turing 1936]

Set of All Programs

Checker
Source
Code

Good

Bad

Static Checkers

 Pros:
– catch errors sooner (even before running)
– check program for all inputs / all possible paths

 Cons:
– cannot distinguish "good" from "bad" exactly
– computers cannot compute everything

 undecidability of the Halting Problem [Turing 1936]

Set of All Programs

Checker
Source
Code

Verifiably
Good

Bad or
Not Verifiable

Multi-Processors and Multi-Core Chips

CPU

CPU

core
#1

core
#2

CPU

Thread 1

Thread 2
data

Web Server

network

Concurrent Programming With Threads
Decompose into pieces that run in parallel
 Improve throughput

Demo

 7

Multithreaded Program Execution

Thread 1

 ...
 t1 = bal;
 bal = t1 + 100;

 ...

Thread 2

 ...
 t2 = bal;
 bal = t2 - 100;

 ...

 o o
t2=bal bal=t2-100t1=bal bal=t1+100

 o o obal=500 bal=500

 o
t2=bal bal=t2-100t1=bal bal=t1+100

 o o obal=500 bal=400 o

Race condition

Multithreaded Program Execution

 o o t2=bal bal=t2-100t1=bal bal=t1+100
 o o obal=500 bal=500

 o
t2=bal bal=t2-100t1=bal bal=t1+100

 o o obal=500 bal=400 o

Race Conditions
 Common
Hard to find via testing

– scheduler dependent
Memory, files, printers, ...

2003 Blackout ($6 Billion) Mars Rovers

Therac-25

Preventing Race Conditions Using Locks

o o o o o o o o o

Thread 1
 acquire(m);
 t1 = bal;
 bal = t1 + 100;
 release(m);

Thread 2
 acquire(m);
 t2 = bal;
 bal = t2 - 100;
 release(m);

Preventing Race Conditions Using Locks

o o o o o o o o o

Thread 1
synchronized(m) {
 t1 = bal;
 bal = t1 + 100;
}

Thread 2
synchronized(m) {
 t2 = bal;
 bal = t2 - 100;
}

Demo

 8

Checkers For Race Conditions
int bal; //# guarded_by m

Good:
Bad:

Tools: Eraser [Savage et al. 97], RccJava, ...

Thread 1

synchronized(m) {
 t1 = bal;
 bal = t1 + 100;
}

Thread 2

synchronized(m) {
 t2 = bal;
 bal = t2 - 100;
}

Threads always hold m when accessing bal
Thread accesses bal without holding m

 RccJava [with Flanagan (UCSC), Peter Applegate '03]

 Found bugs in many pieces of software
– commercial products, Java libraries, web servers
– false positive rate of 75-80%

 benign races, other forms of synchronization
 better than not finding errors

Statically Checking Real Systems

Annotated
Java

Program
RccJava

Warnings

OK!

java.util.Vector

class Vector {
 Object elementData[] // guarded_by this
 int elementCount // guarded_by this

 synchronized int lastIndexOf(Object elem, int n) {
 for (int i = n ; i >= 0 ; i--)

 if (elem.equals(elementData[i])) return i;
 return -1;
 }

 int lastIndexOf(Object elem) {
 return lastIndexOf(elem, elementCount - 1); // race!
 }

 synchronized void trimToSize() { ... }
 synchronized boolean remove(int index) { ... }
}

2

a b
0 1 2

java.util.Vector

class Vector {
 Object elementData[] // guarded_by this
 int elementCount // guarded_by this

 synchronized int lastIndexOf(Object elem, int n) {
 for (int i = n ; i >= 0 ; i--)

 if (elem.equals(elementData[i])) return i;
 return -1;
 }

 int lastIndexOf(Object elem) {
 return lastIndexOf(elem, elementCount - 1); // race!
 }

 synchronized void trimToSize() { ... }
 synchronized boolean remove(int index) { ... }
}

1

a
0

Demo

Atomicity Violations
int bal; //# guarded_by m

Thread 1

 synchronized(m) {
 t1 = bal;
 }

 synchronized(m) {
 bal = t1 + 100;
 }

Thread 2

 synchronized(m) {
 t2 = bal;
 bal = t2 - 100;
 }

o o o o o o o o o o o

 9

Atomicity Violations
int bal; //# guarded_by m

Thread 1

atomic {
 synchronized(m) {
 t1 = bal;
 }

synchronized(m) {
 bal = t1 + 100;
 }
}

Thread 2

atomic {
 synchronized(m) {
 t2 = bal;
 bal = t2 - 100;
 }
}

Unannotated
Java

Program

atomicity
inference

data race
inference

Atomicity
Warnings

Program with
Atomicity

Annotations

Bohr
 Compute atomic annotations automatically
 Identify methods that may suffer interference
With Masha Lifshin '05

Bohr

The (Long) Road to Reliable Software
 Bugs are a real problem
 Checking tools will improve life for everyone
 Industry starting to adopt checkers

 Lots of problems (and fun) left
– tools often hard to use, imprecise
– simple tools pave way for more sophisticated
– need teachable design methodologies

Thanks
 Pete Applegate '03
Masha Lifshin '05
 Cormac Flanagan (UCSC)
Martín Abadi (UCSC and Microsoft)
Shaz Qadeer (Microsoft)

NSF/NASA HDCCSR Program

