CS |34
Searching

Announcements & Logistics

Lab 7 feedback returned!
Lab 8 feedback coming soon!
Lab 9 part | feedback returned: Iet us know if you have any questions!
Lab 9 Boggle
Completed version of all classes due next Wed/Thur
Make sure you thoroughly test your code

Colloguium today: 2:35 in Wege

Do You Have Any Questions?

Last Time: [terators

« |Learned about iterables and iterators

- An object is considered iterable if it supports the iter() function
(special method __1ter__is defined): e.g, lists, strings, tuples

- When an iterable is passed to the iter() function,it creates and
returns an iterator

- An iterator object can generate values on demand

- Supports the next () function (and __next__ method)
which simply provides the "next" value in the sequence

JToday and Next Week

- Briefly introduce how we measure efficiency in Computer Science

- Analyze the efficiency of some of our algorithms and data structures
- Next Monday:

- Evaluate sorting algorithms and their efficiency

- Last 5 classes: Introduction to Java (and Python review)

- Computational thinking and logic stays the same across

programming languages

+ We will focus on how the two languages are different in their
syntax and structure

Measuring Efficiency

How do we measure the efficiency of our program!?
We want programs that run "fast”
But what do we mean by that!

One idea: use a stopwatch to see how long it takes

s this a good method?

What is the stopwatch really measuring?

How long does this piece of code takes on this machine on this
particular input.

Machine (and input) dependent
VWe want to evaluate our program’s efficiency, not the machine's speed
Cannot make any general conclusions using this approach

Might not tell us how fast the program runs on different inputs/machines

Efficiency Metric: Goals

We want a method to evaluate efficiency that:
Is machine and language independent
Analyze the algorithm (problem-solving approach)
Provides guarantees that hold for different types of inputs
Some inputs may be "easy" to work with while others are not
Captures the dependence on input size
Determine how the performance "scales" when the input gets bigger
Captures the right level of specificity
VWe don't want to be too specific (cumbersome)

Measure things that matter; ignore what doesn't

Platform/Language Independent

Machine and language independence

- We want to evaluate how good the algorithm is, rather than how
good the machine or implementation is

- Basic idea: Count the number of steps taken by the algorithm

« Sometimes referred to as the "running time"

/ it
’ ¥y 4
. [
A o Y
’ "
L0 ove .
{ ’ (3
¥ oz £ .4 -
g 2575 ’
o 5 . . > -
. o« E [
F " ‘ L
" f ¢, . e g \
!, - s 'S
- 5
TE A o e
1 = h
Bt Python
- - -
.
wh - [
e ol ey
3 s
| ; st o
‘
ey y
N 1
G ;
N L 2N [4
N R Oy [
N N o L
LY
\ \ N .
\ .

Worst-Case Analysis

We can't just analyze our algorithm on a few inputs and declare victory

Best case. Minimum number of steps taken over all possible
inputs of a given size

Average case. Average number of steps taken over all possible
inputs of a given size

- Worst case. Maximum number of steps taken over all possible
inputs of a given size.

Benefit of wort case analysis:

Regardless of input size, we can conclude that the algorithm always
does at least as well as the pessimistic analysis

Dependence on Input Size

We generally don't care about performance on "small inputs"

Instead we care about "the rate at which the completion time grows"
with respect to the input size

For example, consider the area of a square or circle: while the formula
for each is different, they both grow at the same rate wrt radius

doubling radius increases area by 4x, tripling increases by 9x

o | /""””’“‘\ / \\\\
s 9A 4 9A
1 P \ / | | - I | |

21

2r

I3T'I I 3r |

Doubling r increases area 4X. Doubling r increases area 4 X.
Tripling r increases area 9Xx. Tripling r increases area 9X.

Dependence on Input Size: Big-O

Big-O notation in Computer Science Is a way of quantifying (in fact,
upper bounding) the growth rate of algorithms/functions wrt input size

For example:

A square of side length 7 has area O(r?).

A circle of radius 7 has area O(r?).

A ax QA 44 9A
1 \ - // \ / I |
r [o | e r | I I

I 3r | I 3r |

Doubling r increases area 4X. Doubling r increases area 4 X.
Tripling r increases area 9X. Tripling r increases area 9X.

Dependence on Input Size: Big-O

Big-O notation captures the rate at which which the number of steps

taken by the algorithm grows wrt size of input n, "as n gets large"
Not precise by design, It ignores information about:
Constants (that do not depend on input size n), e.g. 100n = O(n)

Lower-order terms: terms that contribute to the growth but are
not dominant: O(n? + n + 10) = O(n?)

Powerful tool for predicting performance behavior: focuses on what
matters, ignores the rest

Separates fundamental improvements from smaller optimizations

VWe won't study this notion formally: covered in CS136 and CS5256!

Understanding Big-O

Notation: n often denotes the number of elements (size)

Constant time or O(1): when an operation does not depend on the
number of elements, e.g.

Addrtion/subtraction/multiplication of two values, or defining a
variable etc are all constant time

Linear time or O(n): when an operation requires time proportional
to the number of elements, e.g.:

for item in seq:
<do something>

Quadratic time or O(n?): nested loops are often quadratic, e.g.,
for 1 1in range(n):
for j in range(n):
<do something>

Big-O: Common Functions

Notation: n often denotes the number of elements (size)

Our goal: understand efficiency of some algorithms at a high level

O(n?)

O(n)

Time —»

O(1)

Input Size —»

Lists vs Linked Lists:
—fficiency lrade Offs

Lists vs Linked Lists

- Linked Lists: “pointer-based’ data structure, items need not be
contiguous In memory

o

head _value _value

_rest _rest

- Lists: index-based data structure (sometimes called arrays), items are
always stored contiguously in memory

Lists vs Linked Lists

- Linked Lists: Can grow and shrink on the fly: do not need to know
size at the time of creation (therefore no wasted space!)

o

head _value _value

_rest _rest

- Lists: Need to know size (or use some default value) at the time of
creation, can waste space by leaving room for future insertions

An Aside: What exactly 1s Python's list!

- [t's complicated: Python's list implementation is a hybrid

- For today's lecture, we will assume Iits an array-based structure (lower

picture)
head _value _value “a
_rest _rest

Array vs Linked Lists

Inserts at the beginning: which one is better?

el

head

_value

i

_rest

_value

->F

_rest

1> [

HEE

o

1

2

Array vs Linked Lists

Linked list steps:
Point head to new element
Point rest of new element to old list
These steps don't depend on size of list

Therefore, run-time is constant, that is, O(1) time

head _value _value _value

_rest _rest _rest

Array vs Linked Lists

- Now consider an array-based list

- To insert at index 0, we need to shift every element over by one spot
» This takes time proportional to the size: linear time or O(n)
S0 when are arrays more efficient!

* When indexing elements: they give direct access O(1)

+ Linked list: we need to traverse the list to get to the element O(n)

So Which Is Better?

't depends!

Time-space tradeoff; try to find a balance between time efficiency
and space efficiency

Think about what list operations are required the most for your
program

Choose accordingly

Searching in an Array

Searching in an Array

- Let us discuss how quickly we can search for an item In an array-based list

def linearSearch(val, myList):
for elem in myList:

Might return early if val is first item In
myList, but we are interested In the
return True worst case analysis; this happens if
val is not in the myList at all

1f elem == val:

return False

Searching in an Array

- In the worst case, we have to walk through the entire sequence

- Takes linear time, or O(n)

def linearSearch(val, myList):
for elem in myList:

Might return early if val is first item In
myList, but we are interested In the
return True worst case analysis; this happens if
val is not in the myList at all

1f elem == val:

return False

Searching in an Array

- Can we do better?
- Not if the elements are in arbitrary order
- What If the sequence Is sorted!

- Can we utilize this somehow and search more efficiently?

How do we search for an item (say 10) in a sorted array?

jonary

ICt

D

(physical) d

Example

?

Ictionary

IN d

- How do we look up a word

| order

ICa

- Words are listed in alphabet

il

atf u,»..

3 55..)

S 17,

Al

5

\Pr) To

i
35
!

Searching for Word in Dictionary

- Look at the (approximately) middle page for our word
- If we find our word, great!
- Otherwise:

- If our word is later in alphabetical order than the words on the page,
look for the word between the middle page and the last page

- If our word is earlier in alphabetical order, look for the word
between the middle page and the first page

How Good Is This Method!?

Goal: Analyze # pages we need to look at until we find the word

VWe want the worst case: possible to get lucky and find the word right
on the middle page, but we don't want to consider luck!

Each time we look at the “middle” of the remaining pages, the number of
pages we need to look at is divided by 2

A 1024-page dictionary requires at most | | lookups:
1024 pages, < 512, <256, <128, <64, <32, <16,<8, <4, <2, <I page.

Only needed to look at | | pages out of 1024 !

Challenge: What it we have an n page dictionary,
what function of n characterizes the (worst-case)
number of lookups!

L ogarithms: our favorite function

Logarithms are the inverse function to exponentiation

log, n describes the exponent to which 2 must be raised to produce n
That is, 2'°82" = p

Alternatively:

log, n (essentially) describes the number of times n must be divided

by 2 to reduce it to below 1
For us, here's the important takeaway:

How many times can we divide n by 2 until we get down to 1

~ log, n

Binary Search

- The recursive search algorithm we described to search in a sorted
array Is called binary search

« [t is much, much more efficient than a linear search: O(logn) time

+ Note: log n grows much more slowly compared to n as n gets large

- Lets implement this technique

def binarySearch(alList, item):
"""Assume aList is sorted.
If item is in aList, return True;

else return False."""
pass

Binary Search

- Base cases! When are we done!?
- If list Is too small (or empty)

« |f tem Is the middle element

def binarySearch(alList, item):
"""Assume alList is sorted.
If item is in alList, return True;
else return False."""

n = len(alList)

mid = n // 2 .
base case 1 Check middle
if n ==

return False

base case 2
elif item == aList[mid]:
return True

v
B

mid = n//2

Binary Search

Recursive case:
Recurse on left side if item 1s smaller than middle

Recurse on right side If item Is larger than middle

()

If item < aList[mid], then need
to search in alist[:mid]

| N\
B

mid = n//2

Binary Search

Recursive case:
Recurse on left side if item 1s smaller than middle

Recurse on right side If item Is larger than middle

()

If item > aList[mid], then need
to search in aList[mid+|:]

| N\

Binary Search

def binarySearch(aList, item):
"""Assume aList is sorted. If item is
in aList, return True; else return False.
n = len(aList)
mid n// 2
base case 1
if n == 0:
return False

base case 2
elif item == aList[mid]:
return True

recurse on left
elif item < aList[mid]:
return binarySearch(aList[:mid], item)

recurse on right
else:
return binarySearch(aList[mid + 1:], item)

