CS | 34:
'terators

Announcements & Logistics

Lab 7 and 8 feedback coming soon!

No homework this week

Lab 9 Boggle
Parts | & 2 (BoggleBoard and BogglelLetter) due today/tomorrow
Parts 3 (BoggleGame) due next week

Lab next week: More Boggle!

Do You Have Any Questions?

Last [Ime

- Started the implementation of our own linked list class
- Why! Help us understand what's happening in Python's built-in classes
- A glimpse of data structure design (precursor to CS|36)

Implemented several special methods:

- __init__, str len__, _ contains__ (in), __add__ (+)

—

© __getitem__, __setitem__ ([] brackets to get/set value at index)

_value _value _value

- El > [>

_rest _rest _rest

loday

- Wrap up our linked list class:

+ Look at eq__, prepend, append, 1insert

Discuss how we can turn our LinkedList into an “iterable" object
- This will allow us to iterate over our lists in a for loop
- We'll also look behind the scenes at how for loops work in Python

» Implement more special methods: __1ter___and __next__

_value _value _value

- El > [>

_rest _rest _rest

== Operator: __€q

eq__ (self, other)

* When using lists, we can compare their values using the == operator

» To support the == operator in our L1nkedL1ist class, we need to

implement __€q

« We want to walk the lists and check the values

Make sure the sizes of lists match, too

== Operator: __€q

eq__ (self, other)

When using lists, we can compare their values using the == operator

To support the == operator in our LinkedL1st class, we need to

implement __eqQ

== operator calls _eq () method

if we want to test two LinkedLists for equality, we test

if all items are the same

other is another LinkedList

def eq (self, other):

If both lists are empty

if self. rest is None and other.getRest() is Nonme:
return True

W R W

If both lists are not empty, then value of current list elements
must match, and same should be recursively true for
rest of the list
elif self. rest is not None and other.getRest() is not None :
return self. value == other.getValue() and self. rest == other.getRest()

If we reach here, then one of the lists is empty and other is not
return False

Many Other Special Methods!

e Examples:

e __eq__ (self, other): x ==y

e __ne__ (self, other): x !I=y

e __1t__ (self, other): x <y

e __gt__ (self, other): x >y

e __add__(self, other) : x + vy

e __sub__(self, other): x -y

e _mul__(self, other): x * vy

e __truediv__(self, other): x /vy

e __pow__(self, other): x **y

Useful List Method: append

 append(self, val)

- When using lists, we can add an element to the end of an existing list
by calling append (note that append mutates our list)

Basic idea:
« Walk to end of list

+ Create anew LinkedList(val) and add it to the end

value

pqllone
/ rest

rest

value value value

Useful List Method: append

* append(self, val)

- When using lists, we can add an element to the end of an existing list
by calling append (note that append mutates our list)

Basic idea:
« Walk to end of list

+ Create anew LinkedList(val) and add it to the end

value value value value

-l > > B>

rest rest rest rest

Useful List Method: append

* append(self, val)

- When using lists, we can add an element to the end of an existing
list by calling append (mutates our list)

- Adding it to the end just entalls setting the _rest attribute of the
last element to be a new LinkedList with the given value. The
following implementation is recursive.

append is not a special method, but it is a method

that we know and love from the Python list class.
unlike add , we do not return a new LinkedList instance
def append(self, val):
1f am at the list item
if self. rest is None:
add a new LinkedList to the end
self. rest = LinkedList(val)
else:
else recurse until we find the end

self. rest.append(val)

Useful List Method: prepend

 prepend(self, val)

- We may also want to add elements to the beginning of our list
(this will also mutate our list, similar to append)

- The prepend operation is really efficient, we don't need to walk
through the list at all — just do some variable reassignments.

prepend allows us to add an element to the beginning of our list.
like append, it will mutate the LinkedList instance it is called on
LinkedLists are really fast at doing prepend operations -- you can
see that there's no for loop required, just a few variable re-assignments!
def prepend(self, val):
oldval = self. value
oldRest = self. rest
self. value = val
self. rest = LinkedList(oldVal, oldRest)

value value value

self + + +

rest rest rest

Useful List Method: prepend

 prepend(self, val)

- We may also want to add elements to the beginning of our list
(this will also mutate our list, similar to append)

- The prepend operation is really efficient, we don't need to walk
through the list at all — just do some variable reassignments.

prepend allows us to add an element to the beginning of our list.
like append, it will mutate the LinkedList instance it is called on
LinkedLists are really fast at doing prepend operations -- you can
see that there's no for loop required, just a few variable re-assignments!
def prepend(self, val):
oldval = self. value
oldRest = self. rest
self. value = val
self. rest = LinkedList(oldVal, oldRest)

_value value value value
old

self + + + +

" rest rest rest rest

Useful List Method: 1nsert

 insert(self, val, index)

Finally, we may want to allow for list insertions at any point
specified by some valid index.

Basic idea:
It the specified index is O, we can just use the prepend method.

Otherwise, we walk to the appropriate index in the list, and
reassign the _rest attribute at that location to point to a new

LinkedList with the given value, and whose _rest attribute

_value points to the linked list it 1s displacing.
| rest value value value

T

rest rest rest

Useful List Method: 1nsert

 insert(self, val, index)

- |f the specified index is O, we can just use the prepend method.

- Otherwise, we walk to the appropriate index in the list, and
perform the insertion

inserts need a bit of iteration, but only until the index where
we'd like to insert the new element.
insertion operation itself is easy
def insert(self, val, index):

once we reach that spot -- the

if index ==
self.prepend(val)
else:
currList = self
while index > 1:
index -= 1
currList = currList. rest
currList. rest = LinkedList(val, currList. rest)

Useful List Method: 1nsert

- i1nsertRec(self, val, 1index)
- |f the specified index is O, we can just use the prepend method.

- Otherwise, we walk to the appropriate index in the list, and
perform the insertion

« Here Is the recursive version

here 1s a recursive version of insert
def insertRec(self, val, index):
1f index is 0, we found the item we need to return
if index ==
self.prepend(val)
elif we have reached the end of the list, so just append to the end
elif self. rest is None:
self. rest = LinkedList(val)
else we recurse until index reaches 0
else:
self. rest.insertRec(val, index - 1)

terating Over Our List

*+ We can iterate over a Python listina for Loop
- It would be nice if we could rterate over our LinkedList in a for loop

- This won't quite work right now

In [108]: for item in myList:
print(item)

TypeError Traceback (most recent call last)
<ipython-input-108-4bf86db75685> in
———-=> 1 for item in myList:

2 print(item)
<ipython-input-104-8a5ab5d1919c> in (self, index)

68 # else we recurse until index reaches 0

69 # remember that this implicitly calls _ getitem
-—=> 70 return self. rest[index - 1]

71

72 # [] list index notation also calls __ setitem () method

TypeError: 'NoneType' object is not subscriptable

terating Over Our List

- Currently, we can only indirectly iterate over the list using a loop over a
range object.

- We'd really like to iterate directly over the elements of the list (without
using a range)

- Side note: given our LinkedList implementation, this loop Is also
inefficient! A call to len () iterates over the entire list. Each indexing call

newList[i] also iterates over the list up to index 1 each time.

newList = LinkedList(5)
newList.append(10)
newList.append(42)

for i in range(len(newList)):
print (newList[1i])

10
42

Making our List Iterable

- What do we need to directly rterate over our list?
- We need to make our class iterable

+ We need to implement the special methods __1ter___ and
__hext_

Making our List Iterable

- A Python object is considered iterable if it supports the iter()
function: that is, the special method __1ter__ is defined

- All sequences in Python are iterable, e.g, strings, lists, ranges, tuples,
even files

- We can iterate over an iterable directly in a for loop

- When an iterable is passed to the iter() function, it creates
an iterator

- An iterator object can generate values from the sequence on demand

- This is accomplished using the next () function (and __next__
method) which simply provides the "next" value in the sequence

- We have already seen a few iterators that used next (): file
objects, CSV reader objects, etc

For loop: Behind the Scenes

* A for loop in Python iterates directly over iterable objects. For example:

a simple for loop to iterate over a list
for item in numList:
print(item)

- Behind the scenes, the for loop is simply a while loop in disguise, driving
iteration within a try-except statement. The above loop is really:

t ry.. _ | Call the 1ter method on object
it = iter(numList) to get an iterator

while True:
item = next(it)
print(item)
except StopIte ration: Access the next item if it exists, then print it
Pass

This is a way to “hide" the error

As Aside: Try—except blocks

- The try/except block has the following form:

try:
<possibly faulty suite>

except <error>:
<cleanup suite>

- The <possibly faulty suite>isa collection of statements
that has the potential to fall and generate an error.

- |f the failure occurs, rather than causing the program to crash, the
statements inside the except branch are run

* You can even have more than one excepTt, to handle different types
of errors

- Fortunately, Python handles this automatically for us in for loops!

Python's Built-in Iterables

- We can create iterators for lists/strings/
tuples by passing them to iter()

Benefit! Ve can generate values from
the sequence on demand (one at a
time)

An iterator maintains state between
calls to next ()

Once all values in the sequence have
been Iterated over, the iterator "runs
dry" (and becomes empty)

We can only rterate over values once
(unless we create another iterator)

In [3]:

In [4]:

Outf4]:

In [5]:

Out[5]:

In [6]:

Out[6]:

In [7]:

Out[7]:

In [8]:

Out[8]:

In [9]:

charIterator = iter(charList)

type(charIterator)

list iterator

next (charIterator)

lrl

next (charIterator)

lal

next (charIterator)

lil

next (charIterator)

lnl

next (charIterator)

StopIteration
/var/folders/h8/n5myy3jdld7cfv4
—-——-> 1 next(charIterator)

StopIteration:

Creating an [terator

- To create an iterator for a class we need to implement two methods:
- __iter__ () whichis called to creates the iterator
- __next__ () whichis called to advance to the next value

- The key aspect of creating rterators: maintaining state to keep track of
where you are currently in the sequence (and what is the next value
that should be returned)

- Thus, __iter__ () should always "reset" the current state to the
beginning, and __next__ () should update this state each time its
called

Creating an Iterator for LinkedList

- Note: We added a new attribute '_current'to __slots___

» _current keeps track of where we are in the iterator

def iter_ (self

self. current
return self

def next (self

else:

_current *I

) : In [2]: testList = LinkedList()
set current to head testList.append("w")
= self testList.append("o")
testList.append("o")
testList.append("t")
_) : for char in testList:
if self. current is None: print (char)
raise StopIteration
W
val = self. current.value o
self. current = self. current.rest o
return val £
~value ~value ~value ~value

o

_rest

-

_rest

-

_rest

_rest

Creating an Iterator for LinkedList

- Note: We added a new attribute '_current'to __slots___

» _current keeps track of where we are in the iterator

def iter (self): In [2]: testList = LinkedList()
set current to head testList.append("w")
self. current = self testList.append("o")
return self testList.append("o")
testList.append("t")
def _ next_ (self): for char in testList:
if self. current is None: print (char)
raise StopIteration
else: W
val = self. current.value o
self. current = self. current.rest pos
return val £
_current
~value ~value ~value ~value

o

_rest

-

_rest

-

_rest

_rest

Creating an Iterator for LinkedList

- Note: We added a new attribute '_current'to __slots___

» _current keeps track of where we are in the iterator

def iter (self): In [2]: testList = LinkedList()
set current to head testList.append("w")
self. current = self testList.append("o")
return self testList.append("o")
testList.append("t")
def _ next (self): for char in testList:
if self. current is None: print (char)
raise StopIteration
else: W
val = self. current.value o
self. current = self. current.rest o
return val .
_current
~value ~value ~value ~value
_rest _rest _rest _rest

Creating an Iterator for LinkedList

- Note: We added a new attribute '_current'to __slots___

» _current keeps track of where we are in the iterator

def iter (self):

S In [2]: testList = LinkedList()
self. current = self testList.append("w")
return self testList.append("o")
testList.append("o")
i werss (Bl testList.append("t")

if self. current is None:
raise StopIteration

else:
val = self. current. value

for char in testList:
print (char)

self. current = self. current. rest W
return val o
(o)
t

_current
~value ~value _Value _value

> > > >

rest rest rest rest

Using our New [terable LinkedList

In [38]: testList = LinkedList("w")
testList.append("o")
testList.append("o")
testList.append("t")
print("testList: ",testList)

for loops automatically use iterators
for char in testList:
print (char)

testList: [w, o, O, t]
w

o
o
t
In [39]: listIterator = iter(testList)

In [40]: print(next(listIterator))
print(next(listIterator))
print (next(listIterator))
print(next(listIterator))

O 0 ¥

