
CS 134: 
 Iterators

Announcements & Logistics
• Lab 7 and 8 feedback coming soon!

• No homework this week

• Lab 9 Boggle

• Parts 1 & 2 (BoggleBoard and BoggleLetter) due today/tomorrow

• Parts 3 (BoggleGame) due next week

• Lab next week: More Boggle!

Do You Have Any Questions?

Last Time
• Started the implementation of our own linked list class

• Why? Help us understand what’s happening in Python's built-in classes

• A glimpse of data structure design (precursor to CS136)

• Implemented several special methods:

• __init__, __str__, __len__, __contains__ (in), __add__ (+)

• __getitem__, __setitem__ ([] brackets to get/set value at index)

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Today
• Wrap up our linked list class:

• Look at __eq__, prepend, append, insert

• Discuss how we can turn our LinkedList into an “iterable" object

• This will allow us to iterate over our lists in a for loop

• We’ll also look behind the scenes at how for loops work in Python

• Implement more special methods: __iter__ and __next__

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

== Operator: __eq__
• __eq__(self, other)

• When using lists, we can compare their values using the == operator

• To support the == operator in our LinkedList class, we need to
implement __eq__

• We want to walk the lists and check the values

• Make sure the sizes of lists match, too

== Operator: __eq__
• __eq__(self, other)

• When using lists, we can compare their values using the == operator

• To support the == operator in our LinkedList class, we need to
implement __eq__

Many Other Special Methods!
• Examples:

• __eq__ (self, other): x == y

• __ne__ (self, other): x != y

• __lt__ (self, other): x < y

• __gt__ (self, other): x > y

• __add__(self, other) : x + y

• __sub__(self, other): x - y

• __mul__(self, other): x * y

• __truediv__(self, other): x / y

• __pow__(self, other): x ** y

• …

Useful List Method: append

5 3 11
_value

_rest

_value

_rest

_value

_rest
None

val None
_value

_rest

• append(self, val)

• When using lists, we can add an element to the end of an existing list

by calling append (note that append mutates our list)

• Basic idea:

• Walk to end of list

• Create a new LinkedList(val) and add it to the end

_r
es
t

Useful List Method: append

5 3 11
_value

_rest

_value

_rest

_value

_rest
val None
_value

_rest

• append(self, val)

• When using lists, we can add an element to the end of an existing list

by calling append (note that append mutates our list)

• Basic idea:

• Walk to end of list

• Create a new LinkedList(val) and add it to the end

Useful List Method: append
• append(self, val)

• When using lists, we can add an element to the end of an existing
list by calling append (mutates our list)

• Adding it to the end just entails setting the _rest attribute of the
last element to be a new LinkedList with the given value. The
following implementation is recursive.

Useful List Method: prepend
• prepend(self, val)

• We may also want to add elements to the beginning of our list
(this will also mutate our list, similar to append)

• The prepend operation is really efficient, we don’t need to walk
through the list at all — just do some variable reassignments.

5 3 11
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Noneself

Useful List Method: prepend
• prepend(self, val)

• We may also want to add elements to the beginning of our list
(this will also mutate our list, similar to append)

• The prepend operation is really efficient, we don’t need to walk
through the list at all — just do some variable reassignments.

5 3 11
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Noneself

val
_value

_rest

old

Useful List Method: insert
• insert(self, val, index)

• Finally, we may want to allow for list insertions at any point
specified by some valid index.

• Basic idea:

• If the specified index is 0, we can just use the prepend method.

• Otherwise, we walk to the appropriate index in the list, and
reassign the _rest attribute at that location to point to a new
LinkedList with the given value, and whose _rest attribute
points to the linked list it is displacing.

11
_value

_rest

_value

_rest
5 3

_value

_rest
None

val
_value

_rest

Useful List Method: insert
• insert(self, val, index)

• If the specified index is 0, we can just use the prepend method.

• Otherwise, we walk to the appropriate index in the list, and
perform the insertion

Useful List Method: insert
• insertRec(self, val, index)

• If the specified index is 0, we can just use the prepend method.

• Otherwise, we walk to the appropriate index in the list, and
perform the insertion

• Here is the recursive version

Iterating Over Our List
• We can iterate over a Python list in a for loop

• It would be nice if we could iterate over our LinkedList in a for loop

• This won’t quite work right now

Iterating Over Our List
• Currently, we can only indirectly iterate over the list using a loop over a
range object.

• We'd really like to iterate directly over the elements of the list (without
using a range)

• Side note: given our LinkedList implementation, this loop is also
inefficient! A call to len() iterates over the entire list. Each indexing call
newList[i] also iterates over the list up to index i each time.

Making our List Iterable
• What do we need to directly iterate over our list?

• We need to make our class iterable

• We need to implement the special methods __iter__ and
__next__

Making our List Iterable
• A Python object is considered iterable if it supports the iter()

function: that is, the special method __iter__ is defined

• All sequences in Python are iterable, e.g., strings, lists, ranges, tuples,

even files

• We can iterate over an iterable directly in a for loop

• When an iterable is passed to the iter() function, it creates
an iterator

• An iterator object can generate values from the sequence on demand

• This is accomplished using the next() function (and __next__
method) which simply provides the "next" value in the sequence

• We have already seen a few iterators that used next(): file
objects, CSV reader objects, etc

For loop: Behind the Scenes
• A for loop in Python iterates directly over iterable objects. For example:

a simple for loop to iterate over a list

for item in numList:

 print(item)

• Behind the scenes, the for loop is simply a while loop in disguise, driving
iteration within a try-except statement. The above loop is really:

try:

 it = iter(numList)

 while True:

 item = next(it)

 print(item)

except StopIteration:

 pass

Call the iter method on object
to get an iterator

Access the next item if it exists, then print it

This is a way to “hide” the error

As Aside: try-except blocks
• The try/except block has the following form:

try:

 <possibly faulty suite>

except <error>:

 <cleanup suite>

• The <possibly faulty suite> is a collection of statements
that has the potential to fail and generate an error.

• If the failure occurs, rather than causing the program to crash, the

statements inside the except branch are run

• You can even have more than one except, to handle different types

of errors

• Fortunately, Python handles this automatically for us in for loops!

Python's Built-in Iterables
• We can create iterators for lists/strings/

tuples by passing them to iter()
• Benefit? We can generate values from

the sequence on demand (one at a
time)

• An iterator maintains state between
calls to next()

• Once all values in the sequence have
been iterated over, the iterator "runs
dry" (and becomes empty)

• We can only iterate over values once
(unless we create another iterator)

Creating an Iterator
• To create an iterator for a class we need to implement two methods:

• __iter__() which is called to creates the iterator

• __next__() which is called to advance to the next value

• The key aspect of creating iterators: maintaining state to keep track of
where you are currently in the sequence (and what is the next value
that should be returned)

• Thus, __iter__() should always "reset" the current state to the
beginning, and __next__() should update this state each time its
called

Creating an Iterator for LinkedList
• Note: We added a new attribute '_current' to __slots__

• _current keeps track of where we are in the iterator

w o o
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Nonet

_current

w o o
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Nonet

_current

Creating an Iterator for LinkedList
• Note: We added a new attribute '_current' to __slots__

• _current keeps track of where we are in the iterator

w o o
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Nonet

_current

Creating an Iterator for LinkedList
• Note: We added a new attribute '_current' to __slots__

• _current keeps track of where we are in the iterator

w o o
_value

_rest

_value

_rest

_value

_rest

_value

_rest
Nonet

_current

Creating an Iterator for LinkedList
• Note: We added a new attribute '_current' to __slots__

• _current keeps track of where we are in the iterator

Using our New Iterable LinkedList

