
CS 134:
Special Methods & Linked Lists

Announcements & Logistics
• Lab 7 and 8 feedback coming soon

• HW 8 due tonight at 11pm (please don’t forget the week!)

• Lab 9 Boggle
• Parts 1 & 2 (BoggleLetter & BoggleBoard) due Wed/Thur
• We will run our tests and return automated feedback, but we won’t

assign grades
• Part 3 (BoggleGame) due May 4/5

Do You Have Any Questions?

Demo!

Last Time
• Finished implementation of Tic Tac Toe game

• (Fun?) Application of object-oriented design and inheritance

• Designed to help with the Boggle lab

• Advice as you make your way through the lab:

• Isolate functionality and test often (use __str__ to print values as
needed)

• Check individual methods

• Discuss logic with partner before writing any code

• Worry about common cases first, but don’t forget the “edge” cases

Today’s Plan
• We will build a recursive list class

• Our own implementation of list

• On the way, we will learn how to implement some special (aka magic)
methods which override the behavior of existing operators/functions in Python

• We have already seen some examples: __str__

• Automatically called when we use the str() or print() function

• Today we will see:

• __len__ (called when you use len function)

• __contains__ (called when we use in operator)

• __getitem__ (called when we index into a sequence using [])

• Many more!

Python's Built-in list Class
• A class with methods

(that someone else
implemented)

• pydoc3 list

What exactly is a list?
• A container for a sequence of values

• Recall that sequence implies an order

• Another way to think about this:

• A chain of values, or a linked list

• Each value has something after it: the rest of the sequence (recursion!)

• How do we know when we reach the end of our list?

• Rest of the list is None

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Our Own Class LinkedList
• Attributes:

• _value, _rest

• Recursive class:

• _rest points to another instance of the same class

• Any instance of a class that is created by using another instance of
the class is a recursive class

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Initializing Our LinkedList

rest is another
instance of our
LinkedList class

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Special Methods (Review)
• __init__(self, val)

• When is it called?

• When we create an instance (object) of the class

• Can also call it as obj.__init__(val) (where obj is an
instance of the class)

• __str__(self)
• When is it called?

• When we print an instance of the class using print(obj)

• Also called whenever we convert an instance of the class to str,
that is, when we call str function on it: str(obj)

• Can also call it as obj.__str__()

Recursive Implementation: __str__

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

This is recursion! Since str calls itself. The base
case is implicit when self._rest is None

Recursive Implementation: __str__
• What if we want to enclose the elements in the square brackets [.]

• It helps to have a helper method that does the same thing as
__str__() on the previous slide, and then call that helper between
concatenating the square brackets

An Aside: __repr__
• In Labs 8 and 9, we included __repr__ methods in your starter code
• You do not need to worry about them! (Just ignore these methods in Lab 9!)
• For your reference, here is a quick summary:

• Like __str__(), __repr__() returns a string, useful for debugging

• Unlike __str__(), the format of the string is very specific

• __repr__() returns a string representation of an instance of a class that
can be used to recreate the object

Notice we did not say
print(myList) here

Special Method: __len__
• __len__(self)

• Called when we use the built-in function len() in Python on an
object obj of the class: len(obj)

• We can call len function on any object whose class has the
__len__ special method implemented

• We want to implement this special method so it tells us the number of
elements in our linked list, e.g. 3 elements in the list below

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Implementing Recursively
• As our LinkedList class is defined recursively, let's implement the
__len__ method recursively

• Example of fruitful recursion that returns an int (num of elements)

• What is the base case?

• What about the recursive case?

• Count self (so, +1), and then call len() on the rest of the list!

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

Recursive Implementation: __len__
Note: It is preferred to use is or is not
operators (as opposed to == or !=) when

comparing a user-defined object to a
None value. This is because __eq__ and
__ne__ are also special methods that can
be made to behave differently for classes.

5 3 11 None
_value

_rest

_value

_rest

_value

_rest

What About Other Special Methods?
• What other functionality does the built-in list have in Python that we can

incorporate into our own class?

• Can check if an item is in the list (in operator): __contains__
• Concatenate two lists using + : __add__
• Index a list with [] : __getitem__

• Set an item to another val, e.g. myList[2] = “hello" : __setitem__

• Compare the values of two lists for equality using == : __eq__

• Reverse/sort a list

• Append an item to the list: append method
• Many others!

• Let's try to add some of these features to our LinkedList

in Operator: __contains__
• __contains__(self, val)

• When we say if elem in seq in Python:

• Python calls the __contains__ special method on seq

• That is, seq.__contains__(elem)

• Thus if we want the in operator to work for the objects of our class, we
can do so by implementing the __contains__ special method

• Basic idea:

• “Walk” along list checking values

• If we find the value we’re looking for, return True

• If we make it to the end of the list without finding it, return False

• We’ll do this recursively!

in Operator: __contains__
• __contains__(self, val)

• When we say if elem in seq in Python:

• Python calls the __contains__ special method on seq

• That is, seq.__contains__(elem)

• Thus if we want the in operator to work for the objects of our class, we
can do so by implementing the __contains__ special method

+ Operator: __add__
• __add__(self, other)

• When using lists, we can concatenate two lists together into one
list using the + operator (this always returns a new list)

• To support the + operator in our LinkedList class, we need to
implement __add__ special method

• Make the end of our first list point to the beginning of the other

• Basic idea:

• Walk along first list until we reach the end

• Set _rest to be the beginning of second list

• More recursion!

+ Operator: __add__
• __add__(self, other)

• When using lists, we can concatenate two lists together into one
list using the + operator (this always returns a new list)

• To support the + operator in our LinkedList class, we need to
implement __add__ special method

• Make the end of our first list point to the beginning of the other

self is the “head” or
beginning of the list. Note

that it didn’t change!

[] Operator: __getitem__, __set_item__
• __getitem__(self, index) and
__setitem__(self, index, val)
• When using lists, we can get or set the item at a specific index by

using the [] operator (e.g., val = mylist[1] or mylist[2] = newVal)

• To support the [] operator in our LinkedList class, we need
to implement __getitem__ and __setitem__

• Basic idea:

• Walk out to the element at index

• Get or set value at that index accordingly

• Recursive!

[] Operator: __getitem__, __set_item__
• __getitem__(self, index) and
__setitem__(self, index, val)
• When using lists, we can get or set the item at a specific index by

using the [] operator (e.g., val = mylist[1] or mylist[2] = newVal)

[] Operator: __getitem__, __set_item__
• __getitem__(self, index) and
__setitem__(self, index, val)
• When using lists, we can get or set the item at a specific index by

using the [] operator (e.g., val = mylist[1] or mylist[2] = newVal)

== Operator: __eq__
• __eq__(self, other)

• When using lists, we can compare their values using the == operator

• To support the == operator in our LinkedList class, we need to
implement __eq__

• We want to walk the lists and check the values

• Make sure the sizes of lists match, too

== Operator: __eq__
• __eq__(self, other)

• When using lists, we can compare their values using the == operator

• To support the == operator in our LinkedList class, we need to
implement __eq__

Many Other Special Methods
• Examples:

• __eq__ (self, other): x == y
• __ne__ (self, other): x != y
• __lt__ (self, other): x < y
• __gt__ (self, other): x > y
• __add__(self, other) : x + y
• __sub__(self, other): x - y
• __mul__(self, other): x * y
• __truediv__(self, other): x / y
• __pow__(self, other): x ** y
• …

Useful List Method: append
• append(self, val)

• When using lists, we can add an element to the end of an existing
list by calling append (mutates our list)

• Thus append is similar to __add__, except we are only adding a
single element rather than an entire list (so it’s a bit easier to
accomplish)

• Basic idea:

• Walk to end of list

• Create a new LinkedList(val) and add it to end

Useful List Method: append
• append(self, val)

• When using lists, we can add an element to the end of an existing
list by calling append (mutates our list)

• Thus append is similar to __add__, except we are only adding a
single element rather than an entire list (so it’s a bit easier to
accomplish)

Making our List an Iterable
• We can iterate over a Python list in a for loop

• It would be nice if we could iterate over our LinkedList in a for loop

• This won’t quite work right now

Making our List an Iterable
• We can iterate over a Python list in a for loop

• It would be nice if we could iterate over our LinkedList in a for loop

• This won’t quite work right now

• What do we need?

• Next time we will discuss the special method __iter__

• We will look behind the scenes at a for loop and see how it works!

