CS 34
Tic Tac Toe (3)

Announcements & Logistics

Lab 7 feedback coming soon
HW 8 due Monday @ | | pm

Lab 9 Boggle released today: multi-week partners lab (counts as a two
labs In terms of grade; Lab 1s decomposed into three logical parts

Parts | & 2 (BoggleLetter & BoggleBoard) due Wed/Thur | | pm

We will run our tests on these and return automated feedback (similar
to Lab 4 part |), but you are allowed to revise it afterwards

Parts 3 (BoggleGame) due the following week

Please spend time planning and thinking about design before your lab
session!

TA apps due today: https://csci.williams.edu/tatutor-application/

Do You Have Any Questions?

Last [Ime

* (Briefly) Looked at important helper methods in the Board class

- Discussed how to build the TTTBoard class

*+ Added a grid of TTTLetters to the Board class

» Discussed logic to check for win on TTTBoard

* Any questions!

Joday's Plan

Finish our game! Woohoo!
Implement T T TLetter

- We already have a good sense of what it should do after our last
class, but let's look at the details

Implement the game logic
Keep track of mouse clicks

Keep track of players ("X" and "O" alternate)

Use methods in TTTLetter and TTTBoard to check for win
after each move

| 11T Letters

- We have already seen a glimpse of what T T TLetters needs to do
» In fact it has to support this functionality for T T TBoard!

class TTTLetter(builtins.object)
| TTTLetter(win, col=-1, row=-1, letter='")

A TTT letter has several attributes that define it:
* _row, _col coordinates indicate its position in the grid (ints)
* _textObj denotes the Text object from the graphics module,
which has attributes such as size, style, color, etc
and supports methods such as getText(), setText() etc.

Methods defined here:

I
I
I
|
I
I
I
|
| __init__ (self, win, col=-1, row=-1, letter='"')

| Initialize self. See help(type(self)) for accurate signature.
I

I

I

I

I

I

I

I

I

I

I

__repr__(self)
Return repr(self).

__str__(self)
Return str(self).

getLetter(self)
Returns letter (text of type str) associated with property textObj

setLetter(self, char)

[[TLetter: Init

L et’s think about __1n1t__ first

- ATTTLetter isjust a“wrapper’around a Text object

- Using passed in parameters (col, row, letter), initialize __slots___ attributes
from graphics import *
class TTTLetter:
__slots__ = ['_row', ' col', ' textObj']
def init_ (self, win, col=-1, row=-1, letter=""):

global variables needed for graphical testing
xInset = 50; yInset = 50; size = 50

set row and column attributes
self. col col
self. row row

self. textObj = Text(Point(xInset + size * col + size / 2,
yInset + size * row + size / 2), letter)

self. textObj.setSize(20)

self. textObj.setStyle("bold")
self. textObj.setTextColor("black")
self. textObj.draw(win)

| T TLetter: Getters, Setters, str

- Now let's implement the necessary getter/setter methods
- We don't need/want to expose the Text object
- We don't want to allow the row, col to be changed

- We only expose the string (letter) of the Text object, so they are the only
getter/setter methods we need

-« _ str__ useful for debugging and testing

def getLetter(self):

"""Returns letter (text of type str) associated with property textObj"""
return self. textObj.getText()

def setLetter(self, char):
self. textObj.setText(char)

def str (self):

l, col, row = self.getLetter(), self. col, self. row
return "{} at Board position ({}, {})".format(l, col, row)

JTesting I'T TLetter

It's always a good idea to test our class and methods in isolation

Note: No board involved!

win = GraphWin("Tic Tac Toe", 400, 400)

letter = TTTLetter(win, 1, 1, "X")
letter2 = TTTLetter(win, 1, 2, "O")
letter3 = TTTLetter(win, 2, 1, "X")

letter2.setLetter("T") T
print (letter2)

pause and wait for mouse click

this keeps the window open
point = win.getMouse()

T at Board position (1, 2)

Finally... TTT Game Logic

« Let's create a T TT flowchart to help us think through the state of the
game at various stages

l A

Wait for Y
Start —» — Grid? —». Empty Win?
mouse click space?
N}
Draw?

N ‘ Change
players —»

Let’s think about the
“‘common’ case: a valid move in
the middle of the game

Finally... TTT Game Logic

« Let's create a T TT flowchart to help us think through the state of the

game at various stages

|

Wait for
Start —»)
mouse click

Now let’s consider the case of a
win, draw, or invalid move

Win? Y Reset
state
A

N ‘ Change
players —»

Finally... TTT Game Logic

« Let's create a T TT flowchart to help us think through the state of the
game at various stages

l i il

Wait for Y Y Y
Start —» . — Grid? —». EMPY 5 wWin? Reset
mouse click space? . (e
A
oo !
Y
R <Y— Reset? Draw?
state

N ‘ Change
players —»

Now’s let suppose a player
chooses reset

Finally... TTT Game Logic

« Let's create a T TT flowchart to help us think through the state of the

game at various stages

|

Wait for
Start —»)
mouse click

Now’s let suppose a player Exit?
chooses exit

Win? Y Reset
state
A

N ‘ Change
players —»

» End

Finally... TTT Game Logic

« Let's create a T TT flowchart to help us think through the state of the

game at various stages

|

Wait for
Start —»)
mouse click

A
Reset <Y— Reset?
state
Finally, let’s N
handle the click
that may be
outside of any Exit?
of the “valid”
regions
g N¢

Win? Y Reset
state
A

N ‘ Change
players —»

» End

Finally... TTT Game Logic

Let's create a TTT flowchart to help us think through the state of the
game at various stages

Start

—>

|

Wait for
mouse click

N ‘ Change
players —»

» End

Translating our Logic to Code

« Let's think about __Init__:
- What do we need!

- a board, player, and maybe numMoves (to detect draws easily)

A
from graphics import GraphWin * NT T
from tttboard import TTTBoard Wait for Y v N
. : Reset
from tttletter import TTTLetter OB ouse dick Gridi = EmPYE R W P
A
N N
class TTTGame: T * *
slots = ["_board", "_numMoves", "_player" 1 Reset ¢ Rocet Dran? —
state '
def __init__ (self, win): . N Change
self. board = TTTBoard(win) players —%
self._numMoves = 0
self._player = "X" Exit? A » End
Vy

Translating our Logic to Code

- Now let's write a method for handing a single mouse click (point)

- We need a few If-elif-else checks to handle the grid/reset/exit check

- Let's start with that logic and fill the rest in later

def doOneClick(self, point):

Implements the logic for processing
one click. Returns True if play

should continue, and False if the game is over.

if self._board.inExit(point): =

elif self._board.inReset(point):=

elif self._board.inGrid(point): =

Start =

[

-

A

Wait for
mouse click

T

Reset
state

i
Y
Empty? .~ Win?
"y
Draw?

N

Y
- Reset

Yl
—»_ Grid? _=—»
¥
Y
<4—. Reset?
1
Exit? A
N* J

Y

>

=

state

Change
players —»

End

Translating our Logic to Code

Let's handle the “exit” button first (since it's the easiest)

if self._board.inExit(point):

return False

v 1 T t
N
Wait for . Y v , | Reset
Start —p mouse dlick ~—>~. Crid? _—». Empty! . Win? - stato
It 4
CSCL . Reset? Draw?
state
N Change
N players =
Exit? Y » End
N

Translating our Logic to Code

« Now let's handle reset

elif self._board.inReset(point):
self. board.reset()
self. board.clearUpperText()
self. numMoves = 0
self._player = "X"

v 1 T 4
N
Wait for . Y v , | Reset
Start —p mouse click Grid? = Empty! . Winl _=P stato
T N N*
! Y
Y
Reset <4—. Reset? Draw?
state
| N Change
Nl players =
Exit? Y » End
Ny

Translating our Logic to Code

- Finally, let's handle a “normal” move. Start by getting position and
TTTLetter

elif self._board.inGrid(point):
tlet = self._board.getTTTLetterAtPoint(point)

! F ¥
| I
Wait for . Y v , | Reset
Start — mouse click Grid? = Empty! . Winl _=P stato
R 4
Reset M
es€ Reset? Draw?
state
N Change
N players = ‘
Exit? Y » End
Ny

Translating our Logic to Code

« The rest of our
code checks for a
valid move, a win, a
draw, and updates
state accordingly

if tlet.getlLetter() == "":
tlet.setLetter(self._player)

self. numMoves += 1

. A—t -the end if-the winFlag = self._board.checkForWin(self._player)
L if winFlag:
MOVE Wds Valldv we self._board.setStringToUpperText(self._player + " WINS!")
swap p|a>/er~s elif self. numMoves ==
self._board.setStringToUpperText ("DRAW!")
else:
if self._player == "X":
self._player = "0"
else:

self._player = "X"

[TT Summary

Basic strategy

Board: start general, don't think about game specific details

+ TTTBoard: extend generic board with TTT specific features

Inherit everything, overwrite attributes/methods as needed

Letter:isolate functionality of a single TTTLetter on board

 Think about what features are necessary/helpful in other classes
as well

+ TTTGame: think through logic conceptually before writing any code

- Translate logic into code carefully, testing along the way

B0ggle Strategies

At a high level, Tic Tac Toe and Boggle have a lot in common, but the
game state of Boggle i1s more complicated

In Lab 9 you should follow a similar strategy to what we did with TTT

Don’t forget the bigger picture as you implement individual
methods

Think holistically about how the objects/classes work together

Isolate functionality and test often (use __Str__ to print values as
needed)

Discuss logic with partner before writing any code
Worry about common cases first, but don't forget the “edge’” cases

Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!

