
CS 134:
Tic Tac Toe (3)

Announcements & Logistics
• Lab 7 feedback coming soon
• HW 8 due Monday @ 11 pm
• Lab 9 Boggle released today: multi-week partners lab (counts as a two

labs in terms of grade; Lab is decomposed into three logical parts
• Parts 1 & 2 (BoggleLetter & BoggleBoard) due Wed/Thur 11 pm
• We will run our tests on these and return automated feedback (similar

to Lab 4 part 1), but you are allowed to revise it afterwards
• Parts 3 (BoggleGame) due the following week
• Please spend time planning and thinking about design before your lab

session!
• TA apps due today: https://csci.williams.edu/tatutor-application/

Do You Have Any Questions?

Last Time
• (Briefly) Looked at important helper methods in the Board class

• Discussed how to build the TTTBoard class

• Added a grid of TTTLetters to the Board class

• Discussed logic to check for win on TTTBoard
• Any questions?

Board

TTTBoard

TTTLetter

Game

• Finish our game! Woohoo!
• Implement TTTLetter

• We already have a good sense of what it should do after our last
class, but let’s look at the details

• Implement the game logic
• Keep track of mouse clicks
• Keep track of players ("X" and "O" alternate)

• Use methods in TTTLetter and TTTBoard to check for win
after each move

Today’s Plan

TTT Letters
• We have already seen a glimpse of what TTTLetters needs to do
• In fact it has to support this functionality for TTTBoard!

TTTLetter : __init__
• Let’s think about __init__ first

• A TTTLetter is just a “wrapper” around a Text object

• Using passed in parameters (col, row, letter), initialize __slots__ attributes

TTTLetter : Getters, Setters, __str__
• Now let’s implement the necessary getter/setter methods

• We don’t need/want to expose the Text object
• We don’t want to allow the row, col to be changed
• We only expose the string (letter) of the Text object, so they are the only

getter/setter methods we need
• __str__ useful for debugging and testing

Testing TTTLetter
• It’s always a good idea to test our class and methods in isolation
• Note: No board involved!

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click Grid?
Y Empty

space? Win?
Y

Draw?

N

N Change
players

Let’s think about the
“common” case: a valid move in

the middle of the game

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click Grid?
Y Empty

space? Win?
Y

Draw?

N

N Change
players

Y Reset
state

Y

N

Now let’s consider the case of a
win, draw, or invalid move

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Grid?
Y

N

YReset
state

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

Now’s let suppose a player
chooses reset

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

Now’s let suppose a player
chooses exit

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
playersFinally, let’s

handle the click
that may be

outside of any
of the “valid”

regions

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

• Let’s think about __init__:
• What do we need?

• a board, player, and maybe numMoves (to detect draws easily)

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

• Now let’s write a method for handing a single mouse click (point)
• We need a few if-elif-else checks to handle the grid/reset/exit check
• Let’s start with that logic and fill the rest in later

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

• Let’s handle the “exit” button first (since it’s the easiest)

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

• Now let’s handle reset

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

• Finally, let’s handle a “normal” move. Start by getting position and
TTTLetter

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

• The rest of our
code checks for a
valid move, a win, a
draw, and updates
state accordingly

• At the end, if the
move was valid, we
swap players

Translating our Logic to Code

TTT Summary
• Basic strategy

• Board: start general, don’t think about game specific details

• TTTBoard: extend generic board with TTT specific features

• Inherit everything, overwrite attributes/methods as needed

• TTTLetter: isolate functionality of a single TTTLetter on board

• Think about what features are necessary/helpful in other classes
as well

• TTTGame: think through logic conceptually before writing any code

• Translate logic into code carefully, testing along the way

Boggle Strategies
• At a high level, Tic Tac Toe and Boggle have a lot in common, but the

game state of Boggle is more complicated
• In Lab 9 you should follow a similar strategy to what we did with TTT

• Don’t forget the bigger picture as you implement individual
methods

• Think holistically about how the objects/classes work together

• Isolate functionality and test often (use __str__ to print values as
needed)

• Discuss logic with partner before writing any code

• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!

