
CS 134:
Tic Tac Toe (3)



Announcements & Logistics
• Lab 7 feedback coming soon
• HW 8 due Monday @ 11 pm
• Lab 9 Boggle released today:  multi-week partners lab (counts as a two 

labs in terms of grade; Lab is decomposed into three logical parts
• Parts 1 & 2 (BoggleLetter & BoggleBoard) due Wed/Thur 11 pm 
• We will run our tests on these and return automated feedback (similar 

to Lab 4 part 1), but you are allowed to revise it afterwards
• Parts 3 (BoggleGame) due the following week
• Please spend time planning and thinking about design before your lab 

session!  
• TA apps due today: https://csci.williams.edu/tatutor-application/

Do You Have Any Questions?



Last Time
• (Briefly) Looked at important helper methods in the Board class

• Discussed how to build the TTTBoard class

• Added a grid of TTTLetters to the Board class 

• Discussed logic to check for win on TTTBoard
• Any questions?

Board

TTTBoard

TTTLetter

Game



• Finish our game!  Woohoo!
• Implement TTTLetter 

• We already have a good sense of what it should do after our last 
class, but let’s look at the details

• Implement the game logic 
• Keep track of mouse clicks
• Keep track of players ("X" and "O" alternate)

• Use methods in TTTLetter and TTTBoard to check for win 
after each move

Today’s Plan



TTT Letters
• We have already seen a glimpse of what TTTLetters needs to do
• In fact it has to support this functionality for TTTBoard!



TTTLetter : __init__
• Let’s think about __init__ first

• A TTTLetter is just a “wrapper” around a Text object

• Using passed in parameters (col, row, letter), initialize __slots__ attributes



TTTLetter :  Getters, Setters, __str__
• Now let’s implement the necessary getter/setter methods

• We don’t need/want to expose the Text object
• We don’t want to allow the row, col to be changed
• We only expose the string (letter) of the Text object, so they are the only 

getter/setter methods we need
• __str__ useful for debugging and testing



Testing TTTLetter
• It’s always a good idea to test our class and methods in isolation
• Note: No board involved!



Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages
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Let’s think about the 
“common” case: a valid move in 

the middle of the game
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Finally…TTT Game Logic
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• Let’s think about __init__:
• What do we need?

• a board, player, and maybe numMoves (to detect draws easily)

Translating our Logic to Code
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• Now let’s write a method for handing a single mouse click (point)
• We need a few if-elif-else checks to handle the grid/reset/exit check
• Let’s start with that logic and fill the rest in later

Translating our Logic to Code
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• Let’s handle the “exit” button first (since it’s the easiest)

Translating our Logic to Code
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• Now let’s handle reset

Translating our Logic to Code
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• Finally, let’s handle a “normal” move.  Start by getting position and 
TTTLetter

Translating our Logic to Code
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• The rest of our 
code checks for a 
valid move, a win, a 
draw, and updates 
state accordingly

• At the end, if the 
move was valid, we 
swap players

Translating our Logic to Code



TTT Summary
• Basic strategy

• Board: start general, don’t think about game specific details

• TTTBoard: extend generic board with TTT specific features

• Inherit everything, overwrite attributes/methods as needed

• TTTLetter: isolate functionality of a single TTTLetter on board

• Think about what features are necessary/helpful in other classes 
as well

• TTTGame: think through logic conceptually before writing any code

• Translate logic into code carefully, testing along the way



Boggle Strategies
• At a high level, Tic Tac Toe and Boggle have a lot in common, but the 

game state of Boggle is more complicated 
• In Lab 9 you should follow a similar strategy to what we did with TTT

• Don’t forget the bigger picture as you implement individual 
methods 

• Think holistically about how the objects/classes work together

• Isolate functionality and test often (use __str__ to print values as 
needed)

• Discuss logic with partner before writing any code 

• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!


