
CS 134:
Tic Tac Toe (2)

Announcements & Logistics
• Lab 7 feedback coming soon

• HW 8 posted later today, due Monday April 25 11 pm

• Lab 9 Boggle will be released on Friday: multi-week partners lab
(counts as a two labs in terms of grade; Lab is decomposed into four
logical parts

• Parts 1 & 2 (BoggleLetter & BoggleBoard) due Apr 27/28
• We will run our tests on these and return automated feedback

(similar to Lab 4 part 1), but you are allowed to revise it afterwards
• Parts 3 & 4 (BoggleWords & Game) due May 4/5
• Look for another form from Lida about partners soon

Do You Have Any Questions?

Last Time
• Started to discuss an application of object-oriented design

• Started to build a graphical board game: Board class

• Used the graphics package as a black box tool for our design

• Discussed decomposition by breaking tic-tac-toe into layers

Board

TTTBoard

TTTLetter

Game

Last Time: Board class
• Basic features of our game board:

• Text areas: above, below, right of grid
• Grid of squares of set size: rows x cols
• Reset and Exit buttons
• React to mouse clicks (we'll discuss this)

• These are all graphical (GUI) components
• Used graphics package to create

rectangles/window/text
• object.draw(win) draws object

on graphical window win

Board Class: All the Pieces
yInset

xInset

Lower text area

Upper text area

Right text areaGrid for the game

Reset/Exit buttons

Today’s Plan
• Look at some of the helper methods in the Board class

• Talk about building the Tic Tac Toe board by inheriting from Board class

• How can we extend board for a Tic Tac Toe (TTT) game?

• What TTT-specific new methods/attributes do we need?

• Move up to the next layer : TTT Letter

• What attributes/methods can we use to implement functionality of
a single Tic Tac Toe letter?

• Next time: Wrap up Tic Tac Toe by completing the logic of the game

Helper Methods: Board
• Now that we have a board with a grid, buttons, and text areas, it

would be useful to define some methods for interacting with these
objects (aside from getters, setters, __init__, etc)

• Helpful methods?

• Now that we have a board with a grid, buttons, and text areas, it
would be useful to define some methods for interacting with these
objects (aside from getters, setters, __init__, etc)

• Helpful methods?
• Get grid coordinate of mouse click
• Determine if click was in grid, reset, or exit buttons
• Set text to one of 3 text areas
• …

• Note that none of this is specific to Tic Tac Toe (yet)!
• Always good to start general and then get more specific

Helper Methods: Board

Helper
Methods

Working with Mouse Clicks
• win.getMouse() returns a Point object, which has an x and y

coordinate (tuple) determined by the screen coordinate
• We can use helper methods (with simple calculations) to test which

grid square or button the click occurred in
• This will be useful in our next step!

>>> python3 board.py

Board Class: Bigger Picture
• Tic Tac Toe is not the only text based board game
• Our Board class that can be used for other games as well, such as Boggle!

(Lab 9)
• Summary of our basic Board class implementation:

• Create a grid of a certain size (e.g., 3 by 3 for Tic Tac Toe)
• Define attributes and methods (getters) to access rows, cols, size, etc
• Provide helper methods to recognize and interpret a mouse click on

the board
• Provide other basic features (and methods for manipulating them)

such as text areas for indicating whose turn it is, printing who wins, etc
• Through the power of inheritance we can use the same board class for

TicTacToe and Boggle!

Moving up: TTTBoard
• Although our Board class provides a lot of useful functionality, there

are some Tic Tac Toe specific features we need to support
• We can do this by inheriting from the Board class
• We can take advantage of all of the methods and attributes defined

in Board and add any (specific) extras we may need for TTT

• What extra attributes and/or methods might be useful?

Board

TTTBoard

TTTLetter

Game

TTT Board Design
• Think of the grid composed of TTTLetters

• Initially populate grid with TTTLetters that are “empty”

• Lets think about the Board state in the "middle of the game"
• What are some helper methods

that can help get/set the game state?

• Check individual TTTLetters
for X or O

• Setting individual TTTLetters to X or O

• Check for win (how?)
• Need helper methods for row/column/diag

checks

TTTLetter
• To use TTTLetter, we just need to know its documentation (not how it is

implemented)
• We will explore the implementation later

TTTLetter
• To use TTTLetter, we just need to know its documentation (not how

it is implemented)
• To use TTT letters we need to know that they have:

• (col, row) position on game grid
• a letter (string) which is what we care about

• Going to be "X" or "O" in this game
• methods for getting and setting letter

Initializing the TTT Board
• What attributes do we need?

• Everything inherited from Board class
• A grid: a list of lists of TTTLetters

Inherit from Board

Call parent’s __init__
method

Populate grid with empty
TTTLetters

• Right now our board is blank. To put some characters on the board,
what do we need to do?

• Change the TTTLetter object from "" (empty) to "X" or "O"

• Let’s write a few getter methods to help us get TTTLetter objects
from our grid

Accessing Letters on the Board

Works with grid locations
(such as (1,0) or (1,2))

Works with screen coordinates
from mouse clicks (such as

(100, 200))

Setting Letters on the Board
• Once we have a TTTLetter object, we can use the

setLetter() method to change the character to an “X” or “O”

Draw Board with Letters

Resetting the TTTBoard
• As we are building the Board it would be helpful for us to have a way

to reset the state of the board to be blank
• This, of course, is also helpful during play (if we hit the reset button

or the game ends in Win/Draw and we want to restart)
• What do we need to change to reset the board?

• Reset every TTTLetter to empty string

Getting Closer
• What other helper methods do we need?

• Checking for win of a player "X" or "O"
• A player ("X" or "O") wins if:

• There exists a column filled with their letter, OR
• There exists a row filled with their letter, OR
• There exists a diagonal that is filled with their letter

• Let's break that down into separate private helper methods
• _checkRows
• _checkCols
• _checkDiagonals

Checking the Rows
• For a given letter (“X” or “O”), we need to find if there is ANY row

that is made of only letter
• How can we approach this?

Grid positions are (col, row)

checkRows checks the board
horizontally

• For a given letter (“X” or “O”), we need to find if there is ANY row
that is made of only letter

• Fix a row, go through each column

Checking the Rows

Why initialize count here?

What next?

Checking the Rows

If no winning row, return False

If all letters match, return True

• For a given letter (“X” or “O”), we need to find if there is ANY row
that is made of only letter

• Fix a row, go through each column

• We can similarly check a column for a win

Similarly Check Columns

Check Diagonals

Secondary diagonal has
row + col = 2

Secondary diagonal:
(0, 2), (1,1), (2, 0) for a 3x3 board

Primary diagonal has row/col same

• Putting it all together: the board is in a winning state if any of the
three winning conditions are true

• We will make this method public as it will needed outside of this class

Final Check for Win

• We don't have a working Tic Tac Toe game yet
• But we're getting close!

• What's left?
• We have been using TTTLetter, so we’ll look at it briefly
• We need to implement the game logic

• What do we need to do to put this all together?
• Keep track of mouse clicks
• Keep track of players ("X" and "O" must alternate)
• Use TTTLetter and TTTBoard to check for win

Leftovers: Next time

