
CS 134:

Tic Tac Toe

Announcements & Logistics
• Lab 8 today/tomorrow (due Wed/Thur)

• When working with a partner, remember to take turns “driving”

• Questions?

• HW 7 due tonight at 11pm

Do You Have Any Questions?

Last Time
• Learned a bit more about classes and special __ (double underscore)

methods

• __str__ : print representation of objects

• __init__ : initialize objects

• Began talking about inheritance

Today’s Plan
• Discuss inheritance and object oriented design for Tic Tac Toe

• Think about how to decompose a game into multiple pieces

• Board, TTTBoard, TTTLetters, and Game

Tic Tac Toe

Implementing Tic Tac Toe
• Suppose we want to implement Tic Tac Toe

• Teaser demo… 

 
>>> python3 game.py

Decomposition
• Let’s try to identify the “layers” of this game

• Through abstraction, each layer can ignore what’s happening in the

other layers

• What are the layers of  

Tic Tac Toe?

Decomposition
• Let’s try to identify the “layers” of this game

• Through abstraction and encapsulation, each layer

can ignore what’s happening in the other layers

• What are the layers of Tic Tac Toe?

• Bottom layer : Basic board w/buttons, text
areas, mouse click detection (not specific to Tic
Tac Toe!)

• Lower middle layer : Extend the basic board
with Tic Tac Toe specific features (3x3 grid,
of TTTLetters, initial board state: all letters start
blank)

• Upper middle layer : Tic Tac Toe “spaces” or
“letters” (9 in total!); set text to X or O

• Top layer : Game logic (alternating turns,
checking for valid moves, etc)

Board

TTTBoard

TTTLetter

Game

Board class
• Let’s start at the bottom: Board class

• What are basic features of all game boards?

• Think generally…many board-based games have the similar 
basic requirements

• (For example, Boggle, TicTacToe,  
Scrabble, etc)

Board class
• Let’s start at the bottom: Board class

• What are basic features of all game boards?

• Text areas: above, below, right of grid

• Grid of squares of set size: rows x cols

• Reset and Exit buttons

• React to mouse clicks (less obvious!)

• These are all graphical (GUI) components

• Code for graphics is a little messy 

at times

• Lot’s of things to specify: color, size, 

location on screen, etc

Graphics Package for Board

400	pixels

A pixel is one of the small dots or
squares that make up an image on a

computer screen.

400	pixels

Create a window with title “Name” and
size 400x400 (measured in pixels)

We are going to use a simple graphics
package to implement our game board

Graphics Package for Board

(0,0)

(0,400) (400,400)

(400,0)

(200,200)We can draw other shapes as well.

We’ll want to draw Rectangles in our  
Board class.

Window coordinates (x, y)

Graphics Package for Board

Graphics Package for Board

Detecting “events” like mouse clicks are an
important part of a graphical program.

win.getMouse() is a blocking method call
that “blocks” or waits until a click is detected.

Board class: Getting Started
• Attributes:

• (We will add a few more attributes later)

• We need to draw the grid, text areas, and buttons

• Might need some helper methods to organize our code

• Let’s start by drawing the grid on our board

yInset

xInset

Board Class:

__init__ and getters

yInset

xInset

Notice the default values

Board class: Drawing the grid

We need a window (_win) on which to draw.

x=0, y=0:

p1:

xInset + (size * x) = xInset

yInset + (size * y) = yInset

p2:

xInset + (size * (x+1)) = xInset + size

yInset + (size * (y+1)) = yInset + size

p2

p1

Board class: Drawing the grid

We need a window (_win) on which to draw.

x=0, y=1:

p1:

xInset + (size * x) = xInset

yInset + (size * y) = yInset + size

p2:

xInset + (size * (x+1)) = xInset + size

yInset + (size * (y+1)) = yInset + 2 * size
 p2

p1

Board class: Drawing the grid

We need a window (_win) on which to draw.

x=0, y=2:

p1:

xInset + (size * x) = xInset

yInset + (size * y) = yInset + 2 * size

p2:

xInset + (size * (x+1)) = xInset + size

yInset + (size * (y+1)) = yInset + 3 * size

p2

p1

Board class: Drawing the grid

We need a window (_win) on which to draw.

x=1, y=0:

p1:

xInset + (size * x) = xInset + size

yInset + (size * y) = yInset

p2:

xInset + (size * (x+1)) = xInset + 2 * size

yInset + (size * (y+1)) = yInset + size
 p2

p1

And so on…

• Attributes:

 

• (We will add a few more attributes later)

• We need to draw the grid, text areas, and buttons

• Might need some helper methods to organize our code

• Now let’s draw the text areas (we need 3!)

• Text areas are just called Text objects in our graphics package

• We can customize the font size, color, style, and size and call

“setText” to add text

Board class: Getting Started

Initializing and Drawing the Text Areas
• We’ll add attributes for the text areas:  

_textArea, _lowerWord, _upperWord

Board class: Getting Started
• Attributes:  

_win, _rows, _cols, _size, _xInset, _yInset,
_textArea, _upperWord, _lowerWord

• Also _resetButton, _exitButton
• We need to draw the grid, text areas, and buttons

• Might need some helper methods

• Finally, let’s draw the buttons!

• Buttons are just more rectangles…

Initializing and Drawing the Buttons

Putting it all together

Helper Methods
• Now that we have a board with a grid, buttons, and text areas, it

would be useful to define some methods for interacting with these
objects

• Helpful methods?

Helper Methods
• Now that we have a board with a grid, buttons, and text areas, it

would be useful to define some methods for interacting with these
objects

• Helpful methods?

• Get grid coordinate of mouse click

• Determine if click was in grid, reset, or exit buttons

• Set text to one of 3 text areas

• …

• Note that none of this is specific to Tic Tac Toe (yet)!

• Always good to start general and then get more specific

Helper
Methods

Working with Mouse Clicks
• win.getMouse() returns a Point object, which has an x and y

coordinate (tuple) determined by the screen coordinate

• We can use helper methods (with simple calculations) to test which

grid square or button the click occurred in

• This will be useful in our next step!

• (Run python3 board.py in Terminal)

Board Class: Bigger Picture
• Tic Tac Toe is not the only text based board game

• Our Board class that can be used for other games as well, such as Boggle!

(Lab 9)

• Summary of our basic Board class implementation:

• Create a grid of a certain size (e.g., 3 by 3 for Tic Tac Toe)

• Define attributes and properties (getters) to access rows, cols, size, etc

• Provide helper methods to recognize and interpret a mouse click on

the board

• Provide other basic features (and methods for manipulating them)

such as text areas for indicating whose turn it is, printing who wins, etc

• Through the power of inheritance we can use the same board class for

TicTacToe and Boggle!

Moving up: TTTBoard
• Although our Board class provides a lot of useful functionality, there

are some Tic Tac Toe specific features we need to support

• We can do this by inheriting from the Board class

• We can take advantage of all of the methods and attributes defined

in Board and add any (specific) extras we may need for TTT

• What extras (attributes and/or methods) might be useful?

Board

TTTBoard

TTTLetter

Game

Moving up: TTTBoard
• Although our Board class provides a lot of useful functionality, there

are some Tic Tac Toe specific features we need to support

• We can do this by inheriting from the Board class

• We can take advantage of all of the methods and attributes defined

in Board and add any (specific) extras we may need for TTT

• What extras (attributes and/or methods) might be useful?

• Populate grid with TTTLetters

• Check individual TTTLetters for X or O

• Setting individual TTTLetters to X or O

• Check for win (how?)
Board

TTTBoard

TTTLetter

Game

More next time!

