
CS 134:
Classes, Objects, and Inheritance

Announcements & Logistics
• Lab 8 is a partner lab: focuses on using classes

• Must attend one lab session with your partner

• Mon lab due on Wed, Tue lab due on Thur
• Try to get through Part 1 before coming to lab

• Lab 6 feedback will be returned soon

• HW 7 due Monday (on Glow)
• CS info session today (learn about major requirements and courses

being offered next year): 2:35 @ Wege (TCL 123)

Do You Have Any Questions?

Last Time
• Built the Book class to represents book objects

• Learned about private, protected, public attributes and methods (signal
using underscores in Python)

• Explored accessor (getter) and mutator (setter) methods in Python

• Talked about __init__ (aka constructor) and __str__ methods

Today’s Plan
• Look at another simple example involving classes and methods

• Begin talking about inheritance

• Special method __str__ is automatically called when we ask to print
a class object in Python

• __str__ must always return a string

• We can customize how the object is printed by writing a custom
__str__ method for our class

• Very useful for debugging

Print Representation of an Object

By default, if we print an object, its not helpful

__str__ for Book class
• What is a useful string representation of a Book?

• Something that combines the attributes in a meaningful way
• The format() string method comes in handy here

• Now when we ask to print a specific instance of a Book, we get
something useful

Special methods and attributes
• We’ve seen several “special” methods and attributes in Python:

• __name__ special module attribute

• __main__ name attribute of scripts

• __slots__ list for attributes

• __init__ method

• __str__ method

Other Special Methods
• There are many other “special” methods in Python.

• __len__(self): len(x)

• __contains__(self, item): item in x

• __eq__ (self, other): x == y

• __lt__ (self, other): x < y

• __gt__ (self, other): x > y

• __add__(self, other) : x + y

• __sub__(self, other): x - y

• __mul__(self, other): x * y

• __truediv__(self, other): x / y

• __pow__(self, other): x ** y

• There are others!

We’ll come back
to these in a few

weeks!

Another Example: Name Class
• Names of people have certain attributes

• Almost everyone has a first and last name

• Some people have a middle name

• We can create name objects by defining a class to represent these
attributes

• Then we can define methods, e.g., getting initials of people's names, etc
• Let's practice some of the concepts using this class

• __str__: how do we want the names to be printed?
• initials: can we define a method that returns the initials of

people's names?

Example: Name Class

intials() method
• Suppose we want to write a method that returns the person’s initials

as a string?
• How would we do that?

Example: Name Class

Inheritance

Introduction to Inheritance
• Inheritance is the capability of one class to derive or inherit the

properties from another class
• The benefits of inheritance are:

• Often represents real-world relationships well
• Provides reusability of code, so we don’t have to write the same

code again and again
• Allows us to add more features to a class without modifying it

• Inheritance is transitive in nature, which means that if class B inherits
from class A, then all the subclasses of B would also automatically inherit
from class A

• When a class inherits from another class, all methods and attributes are
accessible to subclass, except private attributes (indicated with __)

Inheritance Example
• Suppose we have a base class Fish
• Fish defines several methods that are common to all fish:

• eat(), swim()
• Fish also defines several attributes with default values:

• _length, _weight, _lifespan

Inheritance Example
• All fish have some features in common

• But not all fish are the same!

• Each Fish instance will specify different values for attributes
(_length, _weight, _lifespan)

• Some fish may still need extra functionality!

Inheritance Example
• For example, Sharks might need an attack() method
• Pufferfish might need a puff() method
• We might even want to override an existing method with a different

(more specialized) implementation
• Inheritance allows for all of this!

Inheritance
• When defining super/parent classes, think about the common features and

methods that all subclasses will have
• In subclasses, inherit as much as possible from parent class, and add and/or

override attributes and methods as necessary
• Consider an simple example:

• Person class: defines common attributes for all people on campus

• Student subclass: inherits from Person and adds additional attributes
for student’s major and year

• Faculty subclass: inherits from Person and adds additional attributes
for department and office

• Staff subclass: inherits from Person and adds additional attributes for
type/status of employee (full-time, part-time)

Person Class

Student Class
Our Student class inherits

from Person
Notice this does not include the
inherited attribute ‘_name’ since
that is already provided in Person

This calls the __init__
method of Person

Using the Student Class

Faculty Class

Using the Faculty Class

Using the Faculty Class

major is an attribute of Student, not
Person, and it is not defined in Faculty.

This will not work.

Staff Class

Notice that getter methods
can do more than just return

an attribute directly

Using the Staff Class

This calls __str__ of the Person class

Summary
• Inheritance is a very useful feature of OOP
• Supports code reusability
• One superclass can be used for any number of subclasses in a

hierarchy
• Can change the parent class without changing the subclasses
• More next time!

