CS |34
Classes, Objects, and Inheritance

Announcements & Logistics

Lab 8 is a partner lab: focuses on using classes
Must attend one lab session with your partner
Mon lab due on Wed, Tue lab due on Thur
Try to get through Part | before coming to lab

Lab 6 feedback will be returned soon

HW 7 due Monday (on Glow)

CS info session today (learn about major requirements and courses
being offered next year): 2:35 @ VWege (TCL 123)

Do You Have Any Questions!?

L ast [Ime

- Built the Book class to represents book objects

 Learned about private, protected, public attributes and methods (signal

using underscores in Python)

» Explored accessor (getter) and mutator (setter) methods in Python

» Talked about __1n1t__ (aka constructor) and __Str__ methods

Jloday's Plan

- Look at another simple example involving classes and methods

- Begin talking about inheritance

Print Representation of an Object

In [1]: class A:
"""Test printing of objects."""
pass
In [2]:]a = A() By default, if we print an object, its not helpful

In [3]: print(a)

< main__.A object at 0x111e90750>

» Special method __Str__ is automatically called when we ask to print
a class object in Python

* __Str__ must always return a string

* We can customize how the object is printed by writing a custom
__Str__ method for our class

» Very useful for debugging

__str__ for Book class

- What is a useful string representation of a Book!
- Something that combines the attributes in a meaningful way

» The format() string method comes in handy here

_str 1s used to generate a meaningful string representation for Book objects
str 1s automatically called when we ask to print() a Book object

def str (self):
return "'{}', by {}, in {}".format(self. title, self. author, self. year)

- Now when we ask to print a specific instance of a Book, we get
something useful

In [21]: print(emma)

'"Emma‘', by Jane Austen, in 1815

Special methods and attributes

We've seen several “special” methods and attributes in Python:

* __hame__ special module attribute
* __Mmailn__ name attribute of scripts
+ __Slots__ list for attributes

+ __1n1t__ method

Str__ method

There are many other “special” methods in Python.

Other Special Methods

__len__(self):
__contains__(s
__eq__ (self,
__lt__ (self,
__gt__ (self,
__add__(self,
__sub__(self,
__mul__(self,

__truediv__(self, other): x / vy

el
ot
ot
ot
ot
ot
ot

len(x)
f, 1tem): 1tem 1in x
her): x ==
ner): X <y
ner): X >y
ner) @ X + Yy
ner): X -y
her): x * vy

__pow__(self, other): x ** vy

« [here are others!

- WE'll come back
to these in a few
weeks!

Another Example: Name Class

- Names of people have certain attributes
- Almost everyone has a first and last name
- Some people have a middle name

- We can create name objects by defining a class to represent these
attributes

- Then we can define methods, e.g, getting Initials of people's names, etc
» Let's practice some of the concepts using this class

__str__:how do we want the names to be printed!

* initials: can we define a method that returns the initials of
people's names!

xample: Name Class

In [37]: class Name:
"""Class to represent a person's name.
_slots__=['_£', '"'m', ' 1"]

def init (self, first, last, middle='"'):
self. £ = first
self. m = middle
self. 1 = last

def str (self):
1f the person has a middle name
if len(self. m):
return '{}. {}. {}' .format(self. f[0], self. m[0], self. 1)
else:
return '{}. {}'.format(self. f[0], self. 1)

In [38]: nl = Name('Rohit', 'Bhattacharya'’)
n2 = Name('Jeannie', 'Albrecht', 'Raye')

In [39]: print(nl)
print(n2)

R. Bhattacharya
J. R. Albrecht

intials() methoa

Suppose we want to write a method that returns the person’s inrtials
as a string!

How would we do that!

xample: Name Class

In [40]: class Name:
"""Class to represent a person's name.
slots =(['_f', '"'m", "_17"]

def init (self, first, last, middle='"):
self. £ = first
self. m = middle
self. 1 = last

def initials(self):
if len(self. m):
return '{}. {}. {}.'.format(self. f[0], self. m[0], self. 1[0]).upper()
else:
return '{}. {}.'.format(self. f[0], self. 1[0]).upper()

def str (self):

1f the person has a middle name
if len(self. m):

return '{}. {}. {}'.format(self. f[0], self. m[0], self. 1)
else:

return '{}. {}'.format(self. f[0], self. 1)

In [41]: nl = Name('Steve', 'Freund', 'N')

In [42]: nl.initials()

Out[42]: 'S. N. F.'

In [43]: n2 = Name('Lida', 'Doret', 'P'")

In [44]: n2.initials()

Out[44]: 'L. P. D.'

INnhertance

Introduction to Inheritance

Inheritance is the capablility of one class to derive or inherit the
properties from another class

The benefits of iInheritance are:
- Often represents real-world relationships well

* Provides reusability of code, so we don't have to write the same
code again and again

- Allows us to add more features to a class without modifying it

nherrtance Is transitive in nature, which means that if class B inherits
from class A, then all the subclasses of B would also automatically inherit

from class A

When a class inherits from another class, all methods and attributes are
accessible to subclass, except private attributes (indicated with __)

Inheritance Example

» Suppose we have a base class F1sh
- F1ish defines several methods that are common to all fish:
- eat(), swim()

- F1sh also defines several attributes with default values:

- _length,_weight, _lifespan

Inheritance Example

- All fish have some features in common

But not all fish are the same!

» Each F1sh instance will specify different values for attributes
(_length, _weight, _Llifespan)

- Some fish may still need extra functionality!

Inheritance Example

- For example, Sharks might need an attack() method
- Pufferfish might need a puff() method

- We might even want to override an existing method with a different
(more specialized) implementation

* Inheritance allows for all of this!

INnhertance

When defining super/parent classes, think about the common features and
methods that all subclasses will have

In subclasses, inherit as much as possible from parent class, and add and/or
override attributes and methods as necessary

Consider an simple example:
Person class: defines common attributes for all people on campus

Student subclass: inherits from Person and adds additional attributes
for student's major and year

Faculty subclass: inherits from Person and adds additional attributes
for department and office

Staff subclass: inherits from Person and adds additional attributes for
type/status of employee (full-time, part-time)

Person Class

class Person:
~_slots = [' name']

def 1init (self, name):
self. name = name

def getName(self):
return self. name

def str (self):

return self. name

Student Class

Our Student class inherits
from Person

Notice this does not include the

class Student(Person): inherited attribute* name’ since

__slots = [' year’,

def

def

def

def

__init (self, name, year, major):

—rajortl >~ that is already provided in Person

call init of Person (the super class)
super()._ init (name)

self. year = year

self. major = major

getYear(self):
return self. year This calls the __init__

getMajor (self): method of Person

return self. major

setMajor(self, major):
self. major = major

Using the Student Class

In [49]: jane = Student("Jane", 2024, "CS")

In [50]: # inherited from Person
jane.getName ()

out[50]: 'Jane'

In [51]: # defined in Student

jane.getMajor ()

Out[51]: 'CS'
In [52]: jane.setMajor("Math")

In [53]: jane.getMajor()

Oout[53]: 'Math'

Faculty Class

class Faculty(Person):
__slots = [' dept’,

_office']

def init (self, name, dept, office):
call init of Person (the super class)
super(). 1init (name)
self. dept = dept
self. office = office

def getDept(self):
return self. dept

def getOffice(self):
return self. office

Using the Faculty Class

In [54]: rohit = Faculty("Rohit", "CS", "TBL 309B")

In [55]: rohit.getName()

out[55]: 'Rohit'

In [56]: rohit.getDept()

out[56]: 'CS'

In [57]: print(rohit)

Rohit

In [58]: # this doesn't work since instances of Faculty do
not have a major attribute
rohit.getMajor ()

AttributeError Traceback (most recent call last)
<ipython-input-58-19bd647b2008> in <module>

1 # this doesn't work since instances of Faculty do

2 # not have a major attribute
—~——--> 3 rohit.getMajor()

AttributeError: 'Faculty' object has no attribute 'getMajor'

In [54]:

In [55]:

out[55]:

In [56]:

Out[56]:

In [57]:

In [58]:

Using the Faculty Class

rohit = Faculty("Rohit", "CS", "TBL 309B")

rohit.getName()

'Rohit’

rohit.getDept()

‘cs’ major is an attribute of Student, not
| | Person, and it is not defined in Faculty.
print (rohit) . .
| This will not work.
Rohit
this doesn't work sin;;/f;;tances of Faculty do

not have a major a*cfibute
rohit.getMajor()

AttributeError Traceback (most recent call last)
<ipython-input-58-19bd647b2008> in <module>

1 # this doesn't work since instances of Faculty do

2 # not have a major attribute
-—-—--> 3 rohit.getMajor()

AttributeError: 'Faculty' object has no attribute 'getMajor'

Staff Class

class Staff(Person):
fulltime is a Boolean
__slots = [' fulltime']

def init (self, name, fulltime):
call init of super class
super()._ init (name)
self. fulltime = fulltime

def getStatus(self): :
s sl il Notice that getter methods

return "fulltime" 7 can do more than just return

return "partime" an attribute directly

In [59]:

In [60]:

In [61]:

out[61]:

Using the Staft Class

fred = Staff("Fred", False)

print (fred)
N

Fred

fred.getStatus()

'partime’

This calls __str of the Person class

Summary

Inheritance is a very useful feature of OOP
Supports code reusability

One superclass can be used for any number of subclasses In a
hierarchy

Can change the parent class without changing the subclasses

More next time!

