
CS 134:
Classes and Objects (2)

Announcements & Logistics
• Lab 7 due today/tomorrow
• Lab 8 is going to be a partner lab

• Look for a Google form from Lida

• Both partners have to fill out the form!

• Must attend one lab session together

• Mon lab due on Wed, Tue lab due on Thur
• Can work by yourself but strongly encouraged to find a partner

• Lab 6 graded feedback: coming soon (sorry for the delay)
• HW 7 due Mon 11 pm (fewer questions this week)
• CS info session this Friday (learn about major requirements and courses

being offered next year): 2:35 @ Wege (TCL 123)

Do You Have Any Questions?

Last Time
• Introduced the big idea of object oriented programming (OOP)
• Everything in Python is an object and has a type!

• We can create classes to define our own types
• Learned about using the class keyword to define a class
• Reviewed how to define and call methods on objects of a class

• Methods facilitate abstraction: hide unnecessary implementation details
• Discussed using the self parameter in methods of a class (self is a a

reference to the calling instance)
• Quick aside: functions versus methods?

• Functions are not associated with a specific class
• Methods are associated with a specific class and are invoked on instances

of the class (using dot notation)

Today’s Plan
• Implement a simple Book class and learn about the following:

• Declaring data attributes of objects using __slots__
• Learning about scope and naming conventions in Python
• Using the __init__() method to initialize objects with their

attribute values
• Defining accessor and mutator methods to interact with attributes
• Implementing and invoking methods in general
• Implementing __str__() method to provide meaningful print

statements for custom objects

Defining a Class
• Key features of a class:

• Attributes that describe instance-specific data

• Methods that act on those attributes
• When defining a new class (aka an object blueprint), it’s important to

identify what attributes are required and what actions will be
performed using those attributes

• For example, suppose we want to define a new Book class
• Attributes?

• Methods?

Defining a Class
• Key features of a class:

• Attributes that describe instance-specific data

• Methods that act on those attributes
• When defining a new class (aka an object blueprint), it’s important to

identify what attributes are required and what actions will be
performed using those attributes

• For example, suppose we want to define a new Book class
• Attributes?

• Title, author, publication year, genre, …
• Methods?

• sameAuthorAs(), yearsSincePub(), …

class Book:

 """This class represents a book"""

 # attributes go here

indented body of class definition (methods, etc)

Creating instances of the class:

b1 = Book()

b2 = Book()

Defining Our Own Class: Book

b1 is an instance of class Book

Name of class: Capitalized by convention

b2 is another (different) instance of class Book

Attributes
• Objects have state which is typically held in instance variables or

(in Pythonic terms) attributes.

• Example: For our Book class, these include the book’s title, author, and
publication year

• Every Book instance has different attribute values!

• In Python, we declare attributes using __slots__

• __slots__ is a list of strings that stores the names of all attributes in
our class (note that only names of attributes are stored, not the values!)

• __slots__ is typically defined at the top of our class (before method
definitions)

Declaring Attributes in __slots__
class Book:

 """This class represents a book"""

declare Book attributes

 __slots__ = [“author”, “title”, “year”]

indented body of class definition

“author”,
“title”, and
“year” are

attributes of
the Book

class

• Double leading underscore (__) in attribute name (strictly private): e.g.
__value

• “Invisible” from outside of the class

• Strong “you cannot touch this” policy

• Single leading underscore (_) in name (private/protected): e.g. _value
• Can be accessed from outside, but really shouldn’t

• “Don’t touch this (unless you are a subclass)” policy

• No leading underscore (public): e.g. value
• Can be freely used outside class

• Conventions apply to methods names as well!
• Note: In Python, these are conventions, not rules! But we’ll follow them

Scope and Naming Conventions in Python

• Class to test out different attribute conventions

Attribute Naming Conventions

Note: Just because we can access attributes directly using dot
notation, doesn’t mean we should! We’ll come back to this…

Declaring Attributes in __slots__
class Book:

 """This class represents a book"""

declare Book attributes

 __slots__ = [“_author”, “_title”, “_year”]

indented body of class definition

“_author”,
“_title”, and
“_year” are
protected

attributes of
the Book

class

• How do we assign values to the attributes in __slots__?

• Attributes should be assigned initial values as part of the class definition

• We can achieve this using the __init__ method in Python

• Like a constructor in Java (more on this in a few weeks)

• The __init__ method is run anytime a new instance of a class is created

Initializing a Class: __init__

Book class: __init__
• In most cases, the __init__ method should set values for the class

attributes declared in slots

• Values are often provided as parameters to __init__

When referring to class attributes, use self.{attribute name}.

An Aside: Default Argument Values
• Python supports the ability to provide default argument values in method and

function definitions

• If we create a Book and don’t provide values for the arguments in
__init__, the values are set to be the default values (“” and 0 in this case)

• For now, we’ll remove these default values for simplicity

Methods and Data Abstraction
• Ideally, we should not allow the user direct access to the object’s attributes:

• Instead we control access to attributes through accessor and mutator
methods and avoid accessing the attributes directly

• Accessor methods: provide “read-only” access to the object’s
attributes (“getter” methods)

• Mutator methods: let us modify the object’s attribute values
(“setter” methods)

• This is called encapsulation: the bundling of data with the methods that
operate on that data (another OOP principle)

Accessor methods return values of
attributes, but do not change them

Mutator methods change the value
of attributes but do not explicitly

return anything

Using Accessor/Mutator Methods
Use accessor methods to get the

values of the attributes (when outside of
class implementation)

Use mutator methods to set or change
the values of the attributes (when outside

of class implementation)

• Beyond the accessor and mutator methods, we can define other
methods in the class definition of Book to manipulate or answer
questions about our book objects:

• numWordsInTitle(): returns the number of words in the
title of the book

• yearSincePub(currentYear): takes in the current year
and returns the number of years since the book was published

• sameAuthorAs(otherBook): takes another Book object
as a parameter and checks if the two books have the same
author or not

Defining More Methods

Invoking Class Methods
• We invoke methods on specific instances of our class

• In this example, we are invoking Book methods on specific Book objects

• Special method __str__ is automatically called when we ask to print
a class object in Python

• __str__ must always return a string

• We can customize how the object is printed by writing a custom
__str__ method for our class

• Very useful for debugging

Print Representation of an Object

By default, if we print an object, its not helpful

__str__ for Book class
• What is a useful string representation of a Book?

• Something that combines the attributes in a meaningful way
• The format() string method comes in handy here

• Now when we ask to print a specific instance of a Book, we get
something useful

Summary
• Today we built a simple Book class
• Declared attributes using __slots__
• Briefly learned about about scope and naming conventions in Python
• Used the __init__() method to initialize Book objects with their

attribute values
• Defined accessor and mutator methods to interact with attributes and

avoid accessing attributes directly
• Note about mutator methods: If an attribute cannot and should not

change, no need to define a setter method for it!
• Implemented a few more “interesting” Book methods
• Implemented the __str__() method so that we get meaningful print

statements for our Book objects

