
CS 134:
Classes and Objects

Announcements & Logistics
• Lab 7 is today/tomorrow

• Due Wed/Thurs, 11 pm
• Complete Task 0 before lab

• Remember to add, commit and push code and required images

• Quick note about command line arguments (in Lab 7)
>>> python3 bedtime.py duck cow dog

• Interpreted as a list of strings; we provide the code for you

• HW 6 due tonight at 11 pm (on Glow)

Do You Have Any Questions?

Last Time
• Learned about the Python Turtle package
• Investigated graphical recursion examples
• Learned about function invariance and why it really matters when doing

recursion

Today

• Wrap up our discussion on graphical recursion
• Learn about “fruitful” graphical recursion

• Start discussing our next topic: classes and objects

• Python is an object oriented programming (OOP) language
• Everything in Python is an object and has a type

• Learn how to define our own classes (types) and methods

Recap: Nested Circles
• Remember to move turtle back to starting position to

maintain invariance

Starting position

Recap: Nested Circles
• Swapping order of colors in recursive calls facilitates

alternating color patterns
Starting position

• Suppose we want to keep track of the total number of circles of each color
• Recall that when we explicitly return a value from a function, we call it a

“fruitful” function
• Thus in fruitful recursion, we need explicit return statements
• In this case, we should return a tuple of values:

• first item in tuple is # of circles of colorOut
• second item in tuple is # of circles of colorAlt

Fruitful Version: Nested Circles

nestedCircles(radius, minRadius, colorOut, colorAlt)
• radius: radius of the outermost circle
• minRadius: minimum radius of any circle
• colorOut: color of the outermost circle
• colorAlt: color that alternates with colorOut

Fruitful Version: Nested Circles
• How does this change

our function?
• What should our base

case return?
• How do we keep track

of number of circles of
each color drawn by
recursive calls?

One call to drawDisc

Checking our answers: What do we expect to get?
>>> print(nestedCircles(300, 30, "gold", “purple"))

(5, 10)

Fruitful Version: Nested Circles

Checking our answers: What do we expect to get?
>>> print(nestedCircles(300, 30, "gold", “purple"))

(5, 10)

Fruitful Version: Nested Circles

One more Example: Trees
• We can draw more than just circles!
• Suppose we want to draw recursive trees
• What is our base case? Recursive case?
• Note: Assume turtle starts facing north
trunkLen is the trunk length of the main (vertical) trunk
angle is the branching angle, or the angle between a trunk and its  
 right or left branch
shrinkFactor specifies how much smaller each subsequent branch is in length
minLength is the minimum branch length in our tree

tree(100, 45, 0.5, 100) tree(100, 45, 0.5, 50) tree(100, 45, 0.5, 25) tree(100, 45, 0.5, 12) tree(100, 45, 0.5, 5)

Tree

Moving on…Objects in Python
• We have seen many ways to store data in Python

1234 3.14159 "Hello" [1, 5, 7, 11, 13] (1, 2, 3)
{"CA": "California", "MA": "Massachusetts"}

• Each of these is an object, and every object in Python has:

• a type (int, float, string, list, tuples, dictionaries, sets, etc)

• an internal data representation (primitive or composite)

• a set of functions/methods for interacting with the object

• Vocab: A specific object is an instance of a type

• 1234 is an instance of an int

• "Hello" is an instance of a string

type(object)
• The type() function returns the data type for an object

• Even functions are a type!

• Guido designed the language according
to the principle “first-class everything”

EVERYTHING IN PYTHON IS AN OBJECT
(AND HAS A TYPE)

“One of my goals for Python was to make it so that
all objects were "first class." By this, I meant that I
wanted all objects that could be named in the
language (e.g., integers, strings, functions, classes,
modules, methods, and so on) to have equal status.
That is, they can be assigned to variables, placed in
lists, stored in dictionaries, passed as arguments, and
so forth." — Guido Van Rossum
(Blog, The History of Python, February 27, 2009)

Objects and Types in Python

Stepping Back:
Object-Oriented Programming (OOP)

• Python is an “object-oriented” language

• We have been hinting at this aspect all semester

• Today we will embrace it!

• OOP (object oriented programming) is a fundamental programming paradigm

• It has four major principles:

• Abstraction (data and procedural)

• Inheritance

• Encapsulation

• Polymorphism

• We’ll explore some of these principles in more detail in the coming lectures

What are Objects?
• It’s time to formally define objects in Python

• Objects are:

• collections of data (variables or attributes) and

• methods (functions) that act on those data

• Example of abstraction:

• Abstraction is the art of hiding messy details

• Methods define behavior but hide implementation and internal
representation of data

• Eg., You have been using methods for built-in Python data
types (lists, strings, etc) all semester without really knowing
how the methods are implemented

Example: [1,2,3,4] has type list
• We don’t know how Python actually stores lists internally

• Fortunately the typical Python programmer does not need how lists
are stored to use list objects (we’ve been doing it all semester!)

• How do we manipulate lists? Using the methods provided by Python.

• myList.append(), myList.extend(), etc.

• Take away: Internal representation of objects should be hidden
from users. Objects are manipulated through associated methods.

Creating Our Own Types: Classes
• It’s time to move beyond just the built in Python objects!

• We can create our own data types by defining our own classes

• Classes are like blueprints for objects in Python

• Creating a class involves:

• Defining the class name, attributes, methods

• E.g., someone wrote the code to implement a list class that we’ve been
using all semester

• Using the class involves:

• Creating new instances of the class (which create specific objects)

• E.g., myList = [1, 2], myOtherList = list("abc")

• Performing operations on the instances through methods

• E.g., mylist.append(3)

Defining Our Own Type: Car class

Class provides a “blueprint” for
creating specific cars

Specific instances of the
Car class

Attributes of
the Car class,
such as color,

make, and
model, define
key features of

individual
objects

• Methods are defined as part of the class definition and describe how
to interact with the class objects

• Example: Recall the following methods for the list class

Defining Methods of a Class

dot operator to “call” the
method on the object

• On the previous slide, we called methods like append() and
extend() on a particular list object L.

• We can define methods in our classes in a similar way

• Consider this simple example:

Defining Methods of a Class

• To create methods that can be called on an instance of a class, they must
have a parameter which takes the instance of the class as an argument

• In Python, by convention, the first parameter is used as a reference

to the calling instance. This parameter is usually called self.

All methods include the
self parameter.

Defining Methods of a Class

Our First Method

• How do we call the greeting method?

• We create an instance of the class and call the method on that
instance using dot notation:

•

Mysterious self Parameter
• Even though method definitions have self as the first parameter, we

don’t pass this parameter explicitly when we invoke the methods

• This is because whenever we call a method on an object, the object
itself is implicitly passed as the first parameter

• Note: In other languages (like Java) this parameter is implicit in method
definitions but in Python it is explicit and by convention named self

• Take away:

• When defining methods, always include self
• When calling or invoking methods, the value for self is passed

implicitly

Summary of Classes and Methods
• Classes allow us to define our own data types

• We create instances of classes and interact with those instances using
methods

• All methods belong to a class, and are defined within a class

• A method’s purpose is to provide a way to access/manipulate objects
(or specific instances of the class)

• The first parameter in the method definition is the reference to the

calling instance (self).

• When invoking methods, this reference is provided implicitly

