
CS 134: 
Recursion

Announcements & Logistics
• Lab 6 is today/tomorrow, due Wed/Thurs 10 pm

• Analyzes supreme court data

• Uses dictionaries, tuples, sorting with lambda, plotting, CSV files

• Review relevant lecture material before lab!

• HW 6 will be posted on Wednesday

• Labs 4 and 5 will be returned today

• Midterm will be returned at the end of class

• Avg: 82%

• Please review your exam and come see us with questions!

• Solutions available on Glow

Do You Have Any Questions?

Last Time: Data Structure Review
• Wrapped up dictionaries and sets and discussed plotting with matplotlib

• Data structure discussion: which to use when

• List/tuples: when order matters, dictionaries/sets: when order does not matter

• Tuples or lists?

• Do we need to add/remove items dynamically? If yes, use lists (they are

mutable!); if data stays same (no changes), use tuples (more space efficient)

• Lists vs dictionaries?

• Dictionaries/sets have huge performance benefits over a list as they store
"hashes" of elements and thus support fast look ups/ insertions/ deletes

• This is why dictionaries are also referred to as hash tables in other
programming languages

• If you want to learn about the implementation and trade off various data structures:
take CSCI 136!

Where are We Going?
• First half of CS134: learning all the fundamentals of programming

• Functions, conditionals, loops, data types

• Built-in data structures and methods, sorting, plotting

• Looking ahead to the second half: shift in the course to more algorithmic
and conceptual topics, more "computational thinking"

• Recursion (~1 week)

• Defining our own data types using classes and objects (~2 weeks)

• Object oriented programming topics

• Building our own data types: linked lists

• How does sorting work/ what happens under the hood when Python is
sorting?

• Understanding the basics behind efficient vs inefficient code

Today’s Plan: Intro To Recursion

• What is recursion?

• Translating recursive ideas into recursive programs

• Examining the relation between recursive and iterative programs

• That is, how do recursive ideas relate to the iterative ideas (for loops,
while loops) we’ve covered so far

Recursion In Art and Pop Culture

• You’re already familiar with the idea
of recursion, whether you’ve
referred to it by that name or not!

• The Droste effect was one of the
first explicit uses of recursion in an
advertising medium in 1904

• The cocoa tin shows an image of a
woman holding a platter with a tin
that has an image of the same
woman holding platter with a tin
that has an image of…

Recursion In Art and Pop Culture

• Computer scientists were of course writing nerdy poems about recursion
long before it was cool.

Great fleas have little fleas upon their backs to bite 'em,

And little fleas have lesser fleas, and so ad infinitum.

And the great fleas themselves, in turn, have greater fleas to go on;

While these again have greater still, and greater still, and so on.

— Siphonaptera, A Budget Of Paradoxes

by Augustus De Morgan (1874)

Why Learn About Recursion?
• Recursion is an important problem solving paradigm that can not only

lead to elegant code, it can also be used to do really cool things.

• By the end of the week, you'll be able to use recursion to draw these

beautiful pictures

So What Is Recursion?
• The easiest way to understand recursion is to first see examples of it

• Let’s start by examining a familiar recursive definition in mathematics

• The set of natural numbers can be defined as follows:

• 0 is a natural number

• If n is a natural number, then n+1 is a natural number

• Building blocks of a recursive idea:

1. Base case(s): E.g., 0 is a natural number

2. Recursive rule(s): E.g., if n is a natural number, then n+1 is a natural
number

Exercise: Forming Base Case & Recursive Rules

• How would you define the concept of exponentiation an as a base case
and a recursive rule (assuming n >= 0)

• A recursive definition:

• Base case: a0 = 1
• Recursive rule: an = a * an-1

Exercise: Forming Base Case & Recursive Rules
• Similarly, how would you define the concept of factorial n! as a base case

and a recursive rule (assuming n >= 0)

• A recursive definition:

• Base case: 0! = 1
• Recursive rule: n! = n * (n-1)!

Exercise: Forming Base Case & Recursive Rules
• Let’s examine a more complicated series known as the Fibonacci sequence.

• The Fibonacci sequence is a series of numbers that starts with 0 and 1, and

where each successive number is the sum of the two preceding ones

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ..

• A recursive definition:

• Base cases: F0 = 0 and F1 = 1
• Recursive rule: Fn = Fn-1 + Fn-2

Translating Recursive Ideas To Programs
• The beauty of recursion is that once you’ve written down your recursive

idea, the programming part comes relatively easy

• Ideally, you spend more time with pen and paper and front-load all your

thinking into coming up with an appropriate base case and recursive rule

• Once you have these two ingredients, the implementation of recursive

programs is fairly formulaic

Translating Recursive Ideas To Programs

• Recursive definition for an:

• Base case: a0 = 1
• Recursive rule: an = a * an-1

Translating Recursive Ideas To Programs

• Recursive definition for Fibonacci:

• Base cases: F0 = 0, F1 = 1
• Recursion: Fn = Fn-1 + Fn-2

Recursive Functions
• We have seen many examples of functions calling other functions

• A recursive function is a function that calls itself

• Similar to recursive definitions, all recursive functions consist of one or
more base cases and a set of recursive rules that successively simplify
the problem until we approach one of the base cases

• It’s important that the recursive rule eventually takes you towards one
of the base cases, else we end up with the recursion equivalent of an
infinite loop

• We will compare recursive implementations to iterative
implementations in the next lecture, but for now let’s see what infinite
recursion looks like and take a deeper look into how recursion works

Infinite Recursion

• Recursive definition for an:

• Base case: a0 = 1
• Recursive rule: an = a * an-1

• This gives us the message RecursionError: maximum depth
exceeded in comparison — notice we are no longer simplifying the
problem in our recursive rule.

• What does this error mean?

• So far, we’ve simply believed in the magic of recursion (sometimes folks even

explicitly make reference to the existence of a recursion fairy) but let’s take a
closer look at what goes on in recursive function calls.

• Let’s review a simple recursive function that gives us some intermediate
feedback through print statements.

• Write a recursive function that prints integers from n down to 1

• Recursive definition of countdown:

• Base case: n = 0, do nothing

• Recursive rule: print(n), call countDown(n-1)

Understanding Recursive Functions

• Recursive definition of countdown:

• Base case: n = 0, do nothing

• Recursive rule: print(n), call countDown(n-1)

Understanding Recursive Functions

• It is possible to simplify our function by omitting the base case

• The following two versions are equivalent

• However, in recursion, we prefer that you write the base case
explicitly for pedagogical reasons (for now)

• Bad things happen if you forget the base case.... (we'll see)

Side Note: Implicit Base Case

def countDown(n):

 '''Version 2'''

 if n > 0:

 print(n)

 countDown(n-1)

def countDown(n):

 '''Version 1'''

 if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

• Recursive functions seem to be able to reproduce looping behavior
without writing any loops at all

• To understand what happens behind the scenes when a function calls
itself, let’s review what happens when a function calls another function

• Conceptually we understand function calls through the function frame
model

Understanding Recursive Functions

• Consider a simple function square

• What happens when square(5) is invoked?

def square(x):

return x*x

Review: Function Frame Model

>>> square(5)

5

square(5)

x

return x * x

25

Review:  
Function Frame Model

>>> square(5) + 4

• When we return from a function frame
"control flow" goes back to where the
function call was made

• Function frame (and the local variables
inside it) are destroyed after the return

• If a function does not have an explicit
return statement, it returns None after all
statements in the body are executed 5

square(5)

x

return 25

Return value replaces the
function call

25

Summary:  
Function Frame Model

• How about functions that call other functions?

def sumSquare(a, b):

return square(a) + square(b)

• What happens when we call sumSquare(5, 3)?

Review:  
Function Frame Model

sumSquare(5, 3)

5a 3b

return square(a) + square(b)

def sumSquare(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sumSquare(5,3)

sumSquare(5, 3)

5a 3b

return square(a) + square(b)

def sumSquare(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sumSquare(5,3)

25

sumSquare(5, 3)

5a 3b

return square(a) + square(b)

def sumSquare(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sumSquare(5,3)

25

3

square(3)

x

return x * x

sumSquare(5, 3)

5a 3b

return square(a) + square(b)

def sumSquare(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sumSquare(5,3)

25

3

square(3)

x

return x * x

9

sumSquare(5, 3)

5a 3b

return square(a) + square(b)

def sumSquare(a, b):

return square(a) + square(b)

5

square(5)

x

return x * x

>>> sumSquare(5,3)

25

3

square(3)

x

return x * x

9

34

Function Frame Model to
Understand countDown

def countDown(n):

 '''Prints ints from n down to 1'''

 if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

>>> countDown(5)

5

4

3

2

1

>>> countDown(4)

4

3

2

1

countDown(3)

3n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(2)

2n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(1)

1n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(0)

0n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

Base case reached!

Implicit	return

>>> countDown(3)

3

2
1

countDown(3)

3n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(2)

2n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(1)

1n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(0)

0n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

Base case reached!

>>> countDown(3)

3

2
1

Implicit	return

countDown(3)

3n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(2)

2n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(1)

1n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(0)

0n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

Base case reached!

>>> countDown(3)

3

2
1

Implicit	return

Implicit	return

countDown(3)

3n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(2)

2n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(1)

1n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(0)

0n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

Base case reached!

>>> countDown(3)

3

2
1

Implicit	return

Implicit	returnImplicit	return

countDown(3)

3n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(2)

2n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(1)

1n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

countDown(0)

0n

if n < 1:

 pass # do nothing

 else:

 print(n)

 countDown(n-1)

Base case reached!

>>> countDown(3)

3

2
1

Implicit	return

Implicit	returnImplicit	returnImplicit	return

More Recursion: countUp

• Write a recursive function that prints integers from 1 up to n

• Recursive definition of countUp:

• Base case: n = 0, do nothing

• Recursive rule: call countUp(n-1), print(n)

countUp(n)

>>> countUp(5)

1

2

3

4

5

>>> countUp(4)

1

2

3

4

>>> countUp(3)

1

2

3

• Note that unlike countDown(n) we moved our print
statement to be after the recursive function call

• By printing after the recursive call, the print statement gets
executed “on the way back” from recursive calls

countUp(n)

Function Frame Model to
Understand countUp

countUp(3)

3n

if n < 1:

 pass # do nothing

 else:

 countUp(n-1)

 print(n)

countUp(2)

2n

if n < 1:

 pass # do nothing

 else:

 countUp(n-1)

 print(n)

countUp(1)

1n

if n < 1:

 pass # do nothing

 else:

 countUp(n-1)

 print(n)

countUp(0)

0n

if n < 1:

 pass # do nothing

 else:

 countUp(n-1)

 print(n)

Base case reached!

Implicit	return

>>> countUp(3)

1
2
3

Implicit	returnImplicit	return Implicit	return

• It may be helpful to revisit the power and fibonacci
functions we implemented earlier in the lecture and try to build
function frame models for them

• You can also implement these functions in the website below, and
visualize the execution (the program builds the function frame
models for you step-by-step.)

• https://pythontutor.com/visualize.html#mode=edit
• Remember to also review the examples in the Jupyter notebook

— some of them examples involve printing pretty patterns!

Helpful Exercises

Recursion GOTCHAs!

• If the problem that you are solving recursively is not getting

smaller, that is, you are not getting closer to the base case ---
infinite recursion!

• Never reaches the base case

GOTCHA #1

def countDownGotcha(n):

 '''Prints ints from n down to 1'''

 if n < 1:

 pass # do nothing

 else:

 print(n)

 countDownGotcha(n)

Subproblem not getting smaller!

• Missing base case/ unreachable base case--- another way to
cause infinite recursion!

GOTCHA #2

def printHalvesGotcha(n):

 if n > 0:

 print(n)

 printHalvesGotcha(n/2)

Always true!

• In practice, the infinite recursion examples will terminate
when Python runs out of resources for creating function
call frames, leads to a "maximum recursion depth
exceeded" error message

"Maximum recursion  
depth exceeded"

• Comparing iterative and recursive programs

• Intro to turtle module and graphical recursion

Next Lecture

