
CS 134:
Dictionaries and Sets

Announcements & Logistics
• Lab 5 is today/tomorrow

• Expect most people to finish it during scheduled lab period

• Midterm: Thu Mar 17th

• Attend one slot: 6 - 7:30pm or 8 - 9:30pm in Wachenheim B11

• Wachenheim 002 at 6pm for reduced distractions/extra time

• Midterm review: Tue Mar 15th

• 7 - 8:30 pm in TPL 203 (bring your questions!)

• Practice midterm on Glow

• Please fill out the CS134 TA feedback form by Friday

Do You Have Any Questions?

Last Time
• A dictionary is a mutable collection that maps keys to values

• Keys must be unique & immutable, values can any Python object
• Iterating over a dictionary: what do we iterate over?

• Iterate over the keys of a dictionary directly (by default)
• Dictionary comprehensions: similar to list comprehensions
• Useful dictionary method:

• dict.get(key, defaultVal):
returns dict[key] if key exists, else returns defaultVal.
If no defaultVal provided: returns None if key does not exist.

Today’s Plan
• Wrap up dictionaries
• Investigate sorting with dictionaries
• Discuss a new unordered data structure: sets

• Review all data structures so far and when to use each

Recap: Dictionaries and Mutability
• Dictionaries are mutable

• Has implications for aliasing!

>>> myDict = {1: 'a', 2: 'b', 3: 'c'}

>>> newDict = myDict # alias!

>>> newDict[4] = ‘d'

>>> myDict # changes as well

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
• Note: dictionary keys must be immutable

• Cannot have keys of mutable types such as list
• Dictionary values can be any type (mutable values such as lists)

Recap: Dictionary Comprehensions
• Similar to list comprehensions, useful for mapping and filtering
• Remember: when iterating over a dictionary, we are iterating over its

keys (in the order of creation)

Sorting Operations with Dictionaries
• Let’s say we’re developing a Scrabble app
• We can store the score for each letter as a dictionary as below

• If we call the sorted() function on a dictionary, it returns an
ordered list of all the keys.

Sorting Operations with Dictionaries
• Let’s say we’re developing a Scrabble app
• We can store the score for each letter as a dictionary as below

• If we call the sorted() function on a dictionary, it returns an
ordered list of all the keys.

Sorting By Value
• This behavior isn’t super useful for Scrabble
• What if we wanted to sort based on the scores of the letters (from

highest to lowest) instead?
• This known as a sort-by-value as opposed to sort-by-key

• As before, using sorted() with a key function (not be confused
with the keys in the dictionary!) comes in handy.

• We’ll need to spend just a little more effort to come up with a
suitable key function

• Ex: Jupyter notebook

Sorting By Value
• We first use the items() method to generate a list of tuples, where

each tuple is a key-value pair
• We then sort this list based on value (second element of each tuple)

• Note that we can also use a list comprehension after to extract just
the keys if desired

Advantages of Using Dictionaries
• Easy access based on keys (some sort of named reference) rather

than indices (referenced by position in the list)
• For example, to access the Scrabble score for ‘p’using a dictionary

we simply ask for scrabbleScore[‘p’]
• In contrast suppose the letters and scores are stored as two ordered

lists (or even as a list of lists) that looks like this:

• We now have to be able to “recall” or find where‘p’ is located in
these lists and then extract its corresponding score

Advantages of Using Dictionaries
• Side-by-side this is what that would look like

• Though list access seems like a minor notational inconvenience, it also has
computational implications

• Every time we try to find the position of a letter in our list using the index()
method, we are actually looping over each letter until we find the one we’re
looking for (in fact, we could have re-written the list access explicitly using a loop.)

• The dictionary access on the other hand instantly knows what it’s looking for

Advantages of Using Dictionaries
• Let’s see how this difference plays out when we ask the computer to

do 6 million queries (people across the world play a lot of Scrabble!)
• We’ll use our old friend the time module for this

• Ex: Jupyter notebook

Advantages of Using Dictionaries
• Even in this really simple case, dictionaries give a 4x speed-up!

Summary: Benefits of Dictionaries
• Dictionaries can be a more efficient alternative to sequences for some

operations
• When we insert into an ordered sequence like a list

• We need to "move over" all elements to make space
• This is an expensive operation: worst case (insert at beginning of list) takes

time proportional to number of items stored in list
• When we search for an item in an list:

• If we are not careful we might have to compare to every item stored
• Using a dictionary instead of a list means:

• Can insert more efficiently (without having to move any other item)
• Can support more efficient (almost instantaneous!) queries on average

(if keys are "hashes" of values)
• To learn more about about efficiency of data structures, take CS136/CS256!

Moving on…

New Unordered Data Structure: Sets
• Dictionaries are unordered key, value stores
• What if we only need an unordered "collection" of items?

• We can use a new data structure: sets
• Sets are mutable, unordered collections of immutable objects
• Sets are written as comma separated values between curly braces
• Like keys in a dictionary, values in a set must be unique and immutable

• Sets can be an effective way of eliminating duplicate values

New Unordered Data Structure: Sets
• Question: What is the potential downside of removing duplicates w/sets?

New Unordered Data Structure: Sets
• Question: What is the potential downside of removing duplicates w/sets?

• Loses ordering of elements

Sets: Membership and Iteration
• Can check membership in a set using in, not in
• Can check length of a set using len()
• Can iterate over values in a loop (order will be arbitrary)

end = “ “ prevents new line

Sets are Unordered
• Therefore we cannot:

• Index into a set (no notion of “position”)
• Concatenate two sets (concatenation implies ordering)
• Create a set of mutable objects:

• Such as lists, sets, and dictionaries

Set Methods Summary
• s.add(item): changes the set s by adding item to it

• s.remove(item): changes the set s by removing item from s.

• If item is not in s, a KeyError occurs

The following operations return a new set.

• s1.union(s2) or s1 | s2: returns a new set that has all elements that
are either in s1 or s2

• s1.intersection(s2) or s1 & s2: returns a new set that has all the
elements that are in both sets.

• s1.difference(s2) or s1 - s2: returns a new set that has all the
elements of s1 that are not in s2

• s1 |= s2, s1 &= s2, s1 -= s2 are versions of |, &, - that mutate
s1 to become the result of the operation on the two sets.

An Overview of Python
Data Structures (so far!)

Python Data Structures at a Glance
Lists Tuples Dictionaries Sets

Order Yes Yes No No

Mutability Yes No
Yes

(keys are
immutable)

Yes
(items are
immutable)

Iterable Yes Yes Yes Yes

Comprehensions Yes Yes (need to
enclose in tuple) Yes Yes

Methods

.append(),

.extend(),

.count(),

.index(),
etc

.count(),

.index(),
 .get(),
 .pop(),
 etc

 .add(),
 .remove(),
 etc

Python Data Structures at a Glance
Lists Tuples Dictionaries Sets

Order Yes Yes No No

Mutability Yes No
Yes

(keys are
immutable)

Yes
(items are
immutable)

Iterable Yes Yes Yes Yes

Comprehensions Yes Yes (need to
enclose in tuple) Yes Yes

Methods

.append(),

.extend(),

.count(),

.index(),
etc

.count(),

.index(),
 .get(),
 .pop(),
 etc

 .add(),
 .remove(),
 etc

Which to use when?

Does Order Matter?
• Examples where order in data is important:

• Ranked ballots
• Queues
• Words in a sentence
• Tables/Matrices

• Tuples or lists?
• Do we need to add/remove items dynamically?

• If yes, use lists (they are mutable!)
• If data stays same (no changes), use tuples (more space efficient)
• Even though you can concatenate items to tuples, it is not efficient, as

it requires “copying over all the data” and creating a new tuple

Unordered Collections
• When storing a collection of data with no implicit ordering:

• Use dictionaries or sets
• Dictionaries are more appropriate when there is a key, value pair

• Better performance in general as compared to ordered structures
• Suppose we want to store student data in this course and quickly look up info

for a given unix ID. Which data structure should we use?
• Info may contain student name, class year, section, etc

• Can store a dictionary of dictionaries (just like lists of lists!)
hpDict = { 'hp23': {'name': 'Harry James Potter',

'house':'Gryffindor', 'patronus': 'Stag'},
 'hg3': {'name': 'Hermione Jean Granger',

'house': 'Gryffindor', 'patronus': 'Otter'},
 'll4': {'name': 'Luna Lovegood',

'house': 'Ravenclaw', 'patronus': 'Hare'}}

