
CS 134:
Sorting and Dictionaries

Announcements & Logistics
• No homework this week!

• Practice midterm released on Glow under Files
• Two versions: with and without solutions
• Midterm from F18 with slight modifications to fit our syllabus

• Everything covered through this Friday’s lecture is valid exam content

• Lab 5 will be a short debugging lab released on Monday
• Expect most people to finish it during scheduled lab period

• Midterm: Thur Mar 17: Slots: 6 - 7:30 pm, 8 - 9:30 pm

• Midterm review: Tue Mar 15 7 - 8:30 pm

Do You Have Any Questions?

Last Time
• Discussed new immutable sequences: tuples

• All sequence operations apply to tuples
• Useful for multi-item assignment (argument unpacking)
• Appropriate when passing collections of data around that should

not be mutated
• Revisited sorting and default sorting behavior
• Discussed how we can override the default sorting behavior

• By using reverse=True
• By defining a key function

Today’s Plan
• Continue discussing sorting in Python

• Explore ways to override default behavior using key function
• Discuss stable sorting

• Discuss a new data structure: dictionary

• "Unordered" and mutable collection
• Ordered/sequential data structures (like lists, tuples, strings) aren't

appropriate for all use cases
• For many applications, unordered collections are more efficient

Recap: Sorting with a key function
• Now suppose we have a list of tuples that we want to sort by something
other than the first item

• Example: We have a list of course tuples, where the first item is the course
name, second item is the enrollment cap, and third item is the term (Fall/
Spring).

• Suppose we want to sort these courses by their capacity (second element)

• We can accomplish this by supplying the sorted() function with a key
function that tells it how to compare the tuples to each other

Sorting with a key function
• Defining a key function explicitly:

• We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

• Once we have defined this function, we can pass it as a key when
calling sorted()

•

• sorted(seq, key=function)

• Interpret as for el in seq: use function(el) to sort seq

• For each element in the sequence, sorted() calls the key
function on element to figure out what “feature” of the data
should be used for sorting

• For each course in courses, sort based on value returned by
capacity(course)

Sorting with a key function

Sorting with a key function

• Python's sorting functions are stable
• Items that are “equal” according to the sorting key have the same

relative order as in the original (unsorted) sequence

Python Sorting is Stable

Notice the ordering of courses with
Fall term and those with Spring term

Breaking Ties using key
• We can override this default behavior and specify how to break ties by

supplying a key function that returns a tuple

Notice that now the ties are
broken in favor of capacity

Other uses for key
• What if we wanted to override the default sorting behavior for integers

to sort on absolute values (magnitude) instead?
• That is,

• For an input [-50, 50, -29, 27, 8]
• The sorted output should be [8, 27, -29, -50, 50]

• Can we also define some sensible sorting behavior on mixed lists
e.g., [‘a’, 42, ‘b’, 100]? By default, sorted will throw an
error on such lists.

• Ex: Jupyter notebook

Sorting on magnitude

Sorting mixed lists
• Here, we’ve decided to use the ASCII values of characters to make

sensible comparisons of letters to numbers. However, custom sorting
behaviors are really only limited by your imagination!

Sorting Takeaways
• sorted() function and .sort() list method, by default, sort

sequences in ascending and lexicographic order

• sorted() function works for any sequence, always returns a
new list

• .sort() method sorts lists in place, uses dot notation for
invocation

• We can override Python’s default sorting behavior by supplying optional
parameters key (function), and reverse (Boolean)

• Note: .sort() method for lists also supports key and reverse
parameters just like sorted()

Moving on…

Sequences vs Unordered Collections
• Sequence: a group of items that come one after the other (there is an

implicit ordering of items)
• Sequences in Python: strings, lists, tuples, ranges

• Unordered Collection: a group of things bundled together for a
reason but without a specific ordering

• Maintaining order between items is not always necessary
• Ordering items comes at a cost in terms of efficiency!

• For some use cases, it is more efficient to store an unordered collection

• Python has two data structures which are unordered:

• Dictionaries and sets: both of them are mutable

• We will discuss dictionaries today

Dictionaries
• A dictionary is a mutable collection that maps keys to values

• Enclosed with curly brackets, and contains comma-separated items

• Each item in the dictionary is a colon-separated key, value pair

• There is no ordering between the keys of a dictionary!

• Keys must be an immutable type such as ints, strings, or tuples

• Keys of a dictionary must also be unique: no duplicates allowed!

• Values can any Python type (ints, strings, lists, tuples, etc.)

key value

Accessing Items in a Dictionary
• Dictionaries are unordered so we cannot index into them: no notion of

first or second item, etc.
• We access a dictionary using its keys as the subscript in [] notation

• If the key exists, its corresponding value is returned
• If the key does not exist, it leads to a KeyError

value associated with key '60606'

value associated with key ‘48202'

key value

Adding a Key, Value Pair
• Dictionaries are mutable, so we can add items or remove items from it
• To add a new key, value pair, we can simply assign the key to the value

using: dictName[key] = value

• If the key already exists, an assignment operation as above will overwrite its
value and assign it the new value

Add key, value pair '11777': 'Port Jefferson'

Operations on Dictionaries
• Just like sequences, we can use the len() function on dictionaries to find

out the number of keys it contains
• To check if a key exists or does not exist in a dictionary, we can use the in

or not in operator,’ respectively

Should always check if a key exists before
accessing it's value in a dictionary

Creating Dictionaries
• Several ways to create dictionaries:

• Direct assignment: provide key, value pairs delimited with { }
• Start with empty dict and add key, value pairs

• Empty dict is {} or dict()
• Apply the built-in function dict() to a list of tuples

Note: keys may be listed in any
order, since dictionaries are

unordered

• Direct assignment: provide key, value pairs delimited with { }
• Start with empty dict and add key, value pairs

• Empty dict is {} or dict()
• Apply the built-in function dict() to a list of tuples

Creating Dictionaries

Example: frequency
• Lets write a function frequency() that takes as input a list of words
wordList and returns a dictionary freqDict with the unique words
in wordList as keys, and their number of occurrences in wordList
as values

• For example if wordList is

['hello', 'world', 'hello', 'earth', 'hello', 'earth']

the function should return a dictionary with the following items

 {'hello': 3, ‘world': 1, 'earth': 2}

Example: frequency
• Lets write a function frequency() that takes as input a list of words
wordList and returns a dictionary freqDict with the unique words
in wordList as keys, and their number of occurrences in wordList
as values

Important Dictionary Method: .get()
• get() method is an alternative to using subscript to get the value

associated with a key in a dictionary without checking for its existence
• It takes two arguments: a key, and an optional default value to use

if the key is not in the dictionary
• It returns the value associated with the given key, and if key does

not exist it returns the default value (if given), otherwise returns
None.

• Syntax: val = myDict.get(aKey, defaultVal)

 key whose value we are

looking for in myDict
if key doesn't exist, return

this default value

Important Dictionary Method: .get()
• get() method does not modify the dictionary it is called on

Important Dictionary Method: .get()
• The following code pattern is extremely common when using

dictionaries:

if aKey is not in myDict:
 myDict[aKey] = initVal # add key
else: # if already exists
 myDict[aKey] += step # update val

• Instead of using if, else to do above, it is preferable to use
the .get() method for dictionaries instead

myDict[aKey] = myDict.get(aKey, initVal-step) + step

if key doesn't exist, return
this default value

Example: frequency Improved
• Let's rewrite frequency function using .get() instead of if else

• What should we write instead inside the for loop?

Example: frequency Improved
• Let's rewrite frequency function using .get() instead of if else

• What should we write instead inside the for loop?

Benefits of Dictionaries
• Dictionaries are more efficient than lists for some common operations

• When we insert into an ordered sequence (e.g., a list)
• We need to "move over" all elements to make space
• This is an expensive operation: worst case (insert at beginning of list)

takes time proportional to number of items stored in list
• When we search for an item in an ordered sequence:

• We might have to loop and check every item stored
• Using a dictionary instead of a list means:

• Can insert more efficiently (without having to move any other item)
• Can support more efficient searching (just look up key, no loop required)

• To learn more about about efficiency of data structures, take CS136/CS256!

