CS |34
Tuples and Sorting

Announcements & Logistics

HW 5 due today at | Ipm
Lab 4 part | feedback returned on Friday
Try to fix any issues before submitting Part 2
Lab 4 Part 2 today/tomorrow
Due Wed/Thur at | | pm
Midterm reminder:
Thur Mar | /:Slots: 6 - 7:30 pm, 8 - 9:30 pm in NSB B 1/002
Two rooms reserved (one for reduced distractions/extra time)
Midterm review: Tue Mar |5:7 - 8:30 pm in TPL 203

Midterm practice problems will be released soon

Do You Have Any Questions?

Looking Ahead

No HW posted this week
* Welll post practice midterm questions instead
Lab next week
Short lab on debugging strategies
Start and finish during lab!
No need to start in advance
Things to review in preparation for the midterm
Review lab solutions and HW questions
Review Jupyter notebooks and slides
Discuss practice midterm questions

No classon Fri Mar 18

Last [Ime

* Learned about aliasing in Python
Need to be careful with aliasing when using lists due to mutability

Discussed ways to create "new" lists (true copies):
newList = myList[:] # slicing
newList = [el for el in myList] # list comprehension

Discussed while loops

Needed for ranked-choice voting on Lab 4 Part 2

Joday's Plan

- Today we will discuss a new immutable sequence: tuples

Revisit sorting and default sorting behavior

Discuss how we can override the default sorting behavior

Tuples: An Immutable Sequence

- Tuples are an immutable sequence of values (almost like immutable

lists) separated by commas and enclosed within parentheses ()

In [1]:

string tuple
names = ('Shikha', 'Jeannie', 'Kelly', 'Lida')

num tuple
primes = (2, 3, 5, 7, 11)

singleton A tuple of size | is called a singleton.
num = (5,) ‘ Note the syntax.

parens are optional
values = 5, 6

empty tuple
emp = ()

Tuples as Immutable Sequences

Tuples, like strings, support any sequence operation that does not

involve mutation: e.g,
Llen() function: returns number of elements in tuple
[]1 indexing: access specific element
+, >k tuple concatenation
[:]:slicing to return subset of tuple (as a new tuple)
1n and Not 1n:check membership

for Lloop:iterate over elements in tuple

Multiple Assisgnment and Unpacking

Tuples support simple and nifty syntax for assigning multiple values at
once, and also for "unpacking" sequence values

>>> a, b =4, 7
reverse the order of values 1in tuple
>> b, a=a, b
>>> harryInfo = ['Harry Potter', 11, True]
tuple assignment to “unpack” list elements
>>> name, age, glasses = harryInfo
Note that the preceding line is a more concise (preferred) way of writing:
>>> name = harryInfo[0]
>>> age = harryInfo[1]

>>> glasses = harryInfo[2]

Multiple Return from Functions

- Juples also come in handy as well when returning multiple values
from functions

In [1]: # multiple return values as a tuple
def arithmetic(numl, num2):
"' 'Takes two numbers and returns the sum and product
return numl + num2, numl * num2

In [2]: arithmetic(10, 2)

Out[2]: (12, 20)

In [3]: type(arithmetic(3, 4))

Out[3]: tuple

Conversion between Seguences

- The functions tuple(), list(),and str() let us convert
between sequences

In [4]: word = "Williamstown"
In [5]: charList = list(word)

In [6]: charList

Out[6]: [lwl’ lil, lll, lll, lil’ lal, lml’ lsl, ltl’ lol’ lWl,
In [7]: charTuple = tuple(charList)

In [8]: charTuple

Out[8]: ('W', Iil, lll’ lll, lill lal, lml’ ISI’ ltl’ IOI’ lwl,

In [9]: list((l, 2, 3, 4, 5)) # tuple to list

Out[9]: [1, 2, 3, 4, 5]

Conversion between Seguences

- The functions tuple(), list(),and str() let us convert
between sequences

In [40]: numRange = range(len(word))

In [41]: list(numRange)

out[41]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

In [42]: str(list(numRange))

Out[42]: '[o0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 117"

In [43]: str(('hello', 'world'))
Out[43]: "('hello', 'world')"

* See Jupyter for more examples

Sorting Tuples and More

sorted()

Python has a built-in function for sorting sequences: sorted()

sorted() is a function (not a method!) that takes a sequence
(string, list, tuple) and returns a new sorted sequence as a list

By default, sorted () sorts the sequence in ascending order (for
numbers) and alphabetical (dictionary) order for strings

sorted() does not alter the sequence it is called on and it always
returns the type L1st

In [1]: nums = (42, -20, 13, 10, O, 11, 18)
sorted(nums)

Out[1l]: [-20, O, 10, 11, 13, 18, 42]

In [2]: letters = ('a', 'c¢', 'e', 'p', 'z2")
sorted(letters)

Out[Z]: [laI’ ICI’ leI’ lpI, lzl]

sorted()

- sorted(string) returns a sorted list of strings (not string))

In [1]:

Out[1l]:

In [2]:

Out[2]:

In [4]:

Out[4]:

sorted() will sort the characters in the string and return a list

sorted("Rohit")

[lRl’ Ihl’ Iil’ lol’ ltl]

sorted("Jeannie")

[lJl' Ial’ lel’ le' i' n’ nl]

sorted("*hello! world!*")

[I BN A R T A BCPU B PCoR RN NS, B A B |
[I!I!I*I*Idlel

Sorting Strings

Strings are sorted based on the ASCII values of their characters
ASCII stands for “American Standard Code for Information Interchange”

Common character encoding scheme for electronic communication
(that Is, anything sent on the Internet!)

Special characters come first, followed by capital letters, then
lowercase letters

Characters encoded using integers from @—127
Can use Python functions ord () and chr() to work with these:
ord(str): takesa character and returns its ASCll value as int

chr(int): takes an ASCll value as int and returns its
corresponding character (STr)

ASCIl TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60 :
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 I 105 69 i
10 A [LINE FEED] 42 2A % 74 4A) 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2C 76 4C L 108 6C |
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F o 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 Y/ 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 5A Z 122 IA 2
27 1B [ESCAPE] 59 3B ; 91 58 [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D 1 125 7D}
30 1E [RECORD SEPARATOR] 62 3E > 94 5E ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F ~ 127 7F [DEL]

An aside: sort() vs sorted()

. 50rt () method is only for lists and sorts by mutating the list in
place; invoked using dot notation

- sorted() function can be used to sort any sequence (strings, lists,

tuples). It always returns a new sorted list, and does NOT modify
the original sequence

Example:
listl = [6, 3, 4]; 1list2 = [6, 3, 4]
listl.sort() # sort listl by mutating values

sorted(list2) # returns a *newx sorted list

list] Before list] After list2 Before list2 After

[6, 3, 4] [3, 4, 6] [6, 3, 4] [6, 3, 4]

Does not change!

Sorting Tuples and Lists

- Sorting a list of (or a tuple of) tuples with sorted() sorts elements in
ascending order by their first item

- If there is a tie, Python breaks the tie by comparing the second items
- If the second items are also tied, it compares the third items, and so on

In [1]: fruits = [(12, 'apples'), (5, 'kiwis'), (4, 'bananas'), (27, 'grapes')]
sorted(fruits)

Out[1l]: [(4, 'bananas'), (5, 'kiwis'), (12, 'apples'), (27, 'grapes')]

In [2]: pairs = [(4, 5), (0, 2), (12, 1), (11, 3)]
sorted(pairs)

out[2]: [(0, 2), (4, 5), (11, 3), (12, 1)]

- Note: The same is true for lists and lists of lists

» This sorting behavior is referred to as lexicographical sorting

Sorting Tuples and Lists

- Sorting a list of (or a tuple of) tuples with sorted() sorts elements in
ascending order by their first item

- If there is a tie, Python breaks the tie by comparing the second items

- If the second items are also tied, it compares the third items, and so on

In [3]: triples = [(1, 2, 3), (1, 3, 2), (2, 2, 1), (1, 2, 1)]
sorted(triples)

Out[31: [(1, 2, 1), (1, 2, 3), (1, 3, 2), (2, 2, 1)]

In [4]: characters = [(8, 'a', 'S$'), (7, 'c', '@"),
(7, 'b', "+'), (8, 'a', '1")]

sorted(characters)

Out[4]: [(7, lbl, |+l)’ (7, lcl’ l@l)’ (8, laI, l!l), (8, lal, l$|)]

Question: How do we sort based on the second/third item in tuples?
Or sort in reverse order?

Changing the Default Sorting Behavior

+ To understand the sorted () function more, lets read its documentation

In [5]: help(sorted)

Help on built-in function sorted in module builtins:

sorted(iterable, /, *,|key=None, reverse=False)
Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.

- First parameter is an iterable, meaning, any object over which we can rterate
(list, string, tuple, range).

- sorted() takes a optional parameter key which specifies a function, that
for each element, determines how it should be compared to other elements

- sorted() takes an optional boolean parameter reverse (which by default
s set to False)

Reverse Sorting

- Let's consider the optional reverse parameter to sorted()

- We can sort sequences In reverse order by setting this parameter to
be True

In [2]: sorted([8, 2, 3, 1, 3, 1, 2], reverse=True)

Out[2]: [8, 3, 3, 2, 2, 1, 1]
In [3]: sorted(['a', 'c', 'e', 'p', 'z2'], reverse=True)
Out[3]: [lzl, IpI, Iel, lcl’ lal]

In [4]: fruits = [(12, 'apples'), (5, 'kiwis'), (4, 'bananas'), (27, 'grapes')]
sorted(fruits, reverse=True)

Out[4]: [(27, 'grapes'), (12, 'apples'), (5, 'kiwis'), (4, 'bananas')]

Sorting with a kKey function

Now suppose we have a list of tuples that we want to sort by something
other than the first item

Example: We have a list of course tuples, where the first item is the course
name, second item is the enrollment cap, and third item is the term (Fall/

Spring).

courses = [('CS134', 74, 'Spring'), ('CS136', 60, 'Spring'),
('AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall’),
('MUs112', 10, 'Fall'), ('STAT200', 50, 'Spring'),
('pSyc201', 50, 'Fall'), ('MATH110', 74, 'Spring')]

Suppose we want to sort these courses by their capacity (second element)

- We can accomplish this by supplying the sorted() function with a key
function that tells it how to compare the tuples to each other

Sorting with a kKey function

- Defining a key function explicitly:

+ We can define an explicit Key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

def capacity(courseTuple):
'' '"Takes a sequence and returns item at index 1'''
return courseTuple[1l]

»+ Once we have defined this function, we can pass it as a key when
calling sorted()

can tell sorted to sort by capacity instead
sorted(courses, key=capacity)

Sorting with a kKey function

- Defining a key function explicitly:

*+ We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

def capacity(courseTuple):
"' 'Takes a sequence and returns item at index 1'''
return courseTuple[1l]

we can tell sorted() to sort by capacity instead
sorted(courses, key=capacity)

[('MUS112', 10, 'Fall'),
('AFR206', 30, 'Spring'),
('ECON233', 30, 'Fall'),
('STAT200', 50, 'Spring'),
('PSYC201', 50, 'Fall'),
('Cs136', 60, 'Spring'),
(*€S134°,- 74, 'Spring:.);
('MATH110', 74, 'Spring')]

