
CS 134:
Tuples and Sorting

Announcements & Logistics
• HW 5 due today at 11pm

• Lab 4 part 1 feedback returned on Friday
• Try to fix any issues before submitting Part 2

• Lab 4 Part 2 today/tomorrow
• Due Wed/Thur at 11 pm

• Midterm reminder:
• Thur Mar 17: Slots: 6 - 7:30 pm, 8 - 9:30 pm in NSB B11/002
• Two rooms reserved (one for reduced distractions/extra time)

• Midterm review: Tue Mar 15: 7 - 8:30 pm in TPL 203
• Midterm practice problems will be released soon

Do You Have Any Questions?

Looking Ahead
• No HW posted this week

• We’ll post practice midterm questions instead
• Lab next week

• Short lab on debugging strategies
• Start and finish during lab!
• No need to start in advance

• Things to review in preparation for the midterm
• Review lab solutions and HW questions
• Review Jupyter notebooks and slides
• Discuss practice midterm questions

• No class on Fri Mar 18

Last Time
• Learned about aliasing in Python

• Need to be careful with aliasing when using lists due to mutability

• Discussed ways to create "new" lists (true copies):

newList = myList[:] # slicing

newList = [el for el in myList] # list comprehension

• Discussed while loops

• Needed for ranked-choice voting on Lab 4 Part 2

Today’s Plan
• Today we will discuss a new immutable sequence: tuples

• Revisit sorting and default sorting behavior
• Discuss how we can override the default sorting behavior

Tuples: An Immutable Sequence
• Tuples are an immutable sequence of values (almost like immutable

lists) separated by commas and enclosed within parentheses ()

A tuple of size 1 is called a singleton.
Note the syntax.

• Tuples, like strings, support any sequence operation that does not
involve mutation: e.g,

• len() function: returns number of elements in tuple

• [] indexing: access specific element

• +, *: tuple concatenation

• [:]: slicing to return subset of tuple (as a new tuple)

• in and not in: check membership

• for loop: iterate over elements in tuple

Tuples as Immutable Sequences

Multiple Assignment and Unpacking
• Tuples support simple and nifty syntax for assigning multiple values at

once, and also for "unpacking" sequence values

>>> a, b = 4, 7

reverse the order of values in tuple

>>> b, a = a, b

>>> harryInfo = ['Harry Potter', 11, True]

tuple assignment to “unpack” list elements

>>> name, age, glasses = harryInfo

• Note that the preceding line is a more concise (preferred) way of writing:

>>> name = harryInfo[0]

>>> age = harryInfo[1]

>>> glasses = harryInfo[2]

Multiple Return from Functions
• Tuples also come in handy as well when returning multiple values

from functions

Conversion between Sequences
• The functions tuple(), list(), and str() let us convert

between sequences

• The functions tuple(), list(), and str() let us convert
between sequences

• See Jupyter for more examples

Conversion between Sequences

Sorting Tuples and More

sorted()
• Python has a built-in function for sorting sequences: sorted()

• sorted() is a function (not a method!!) that takes a sequence
(string, list, tuple) and returns a new sorted sequence as a list

• By default, sorted() sorts the sequence in ascending order (for
numbers) and alphabetical (dictionary) order for strings

• sorted() does not alter the sequence it is called on and it always
returns the type list

• sorted(string) returns a sorted list of strings (not string!)

sorted()

Sorting Strings
• Strings are sorted based on the ASCII values of their characters
• ASCII stands for “American Standard Code for Information Interchange”

• Common character encoding scheme for electronic communication
(that is, anything sent on the Internet!)

• Special characters come first, followed by capital letters, then
lowercase letters

• Characters encoded using integers from 0-127
• Can use Python functions ord() and chr() to work with these:

• ord(str): takes a character and returns its ASCII value as int
• chr(int): takes an ASCII value as int and returns its

corresponding character (str)

An aside: sort() vs sorted()
• .sort() method is only for lists and sorts by mutating the list in

place; invoked using dot notation
• sorted() function can be used to sort any sequence (strings, lists,

tuples). It always returns a new sorted list, and does NOT modify
the original sequence

Example:

list1 = [6, 3, 4]; list2 = [6, 3, 4]

list1.sort() # sort list1 by mutating values

sorted(list2) # returns a *new* sorted list

[3, 4, 6][6, 3, 4]

list1 Before list1 After list2 Before list2 After

[6, 3, 4] [6, 3, 4]

Does not change!

• Sorting a list of (or a tuple of) tuples with sorted() sorts elements in
ascending order by their first item

• If there is a tie, Python breaks the tie by comparing the second items

• If the second items are also tied, it compares the third items, and so on

• Note: The same is true for lists and lists of lists

• This sorting behavior is referred to as lexicographical sorting

Sorting Tuples and Lists

• Sorting a list of (or a tuple of) tuples with sorted() sorts elements in
ascending order by their first item

• If there is a tie, Python breaks the tie by comparing the second items

• If the second items are also tied, it compares the third items, and so on

•
Question: How do we sort based on the second/third item in tuples?

Or sort in reverse order?

Sorting Tuples and Lists

Changing the Default Sorting Behavior
• To understand the sorted() function more, lets read its documentation

• First parameter is an iterable, meaning, any object over which we can iterate
(list, string, tuple, range).

• sorted() takes a optional parameter key which specifies a function, that
for each element, determines how it should be compared to other elements

• sorted() takes an optional boolean parameter reverse (which by default
is set to False)

Reverse Sorting
• Let’s consider the optional reverse parameter to sorted()

• We can sort sequences in reverse order by setting this parameter to
be True

Sorting with a key function
• Now suppose we have a list of tuples that we want to sort by something
other than the first item

• Example: We have a list of course tuples, where the first item is the course
name, second item is the enrollment cap, and third item is the term (Fall/
Spring).

• Suppose we want to sort these courses by their capacity (second element)

• We can accomplish this by supplying the sorted() function with a key
function that tells it how to compare the tuples to each other

Sorting with a key function
• Defining a key function explicitly:

• We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

• Once we have defined this function, we can pass it as a key when
calling sorted()

•

Sorting with a key function
• Defining a key function explicitly:

• We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

•

