CS |34
Lists & Mutability

Announcements & Logistics

Lab 3 graded feedback will be returned soon: make sure to review it
Lab 4 Part | is due tonight/tomorrow at | | pm
We will run some tests and return automated feedback
Part 2 is due next week
Homework 5 will be posted later today, due Mon at | [pm
(Probably) Last HWV before the midterm
Midterm: Thur Mar |/ in evening

Review session: Tue Mar |5 in evening (room TBD)

Do You Have Any Questions?

How to Read GradeSheet. txt

o — + Good
'GRADE SHEET FOR CS134 LAB 3 ("Building a Pyt

I ~ Okay
Requirements of this lab:
| 0. Thg sox(wordTools.py) - Needs work

+ Module documentation string ("""...""" at top of module)
~ Fixed doctest for canon
- Some other item

1.

Grade: B

Comments from Graders: n
\

Specific comments you should pay attention to.
|
|

How to Read Feedback in Code

#$ Combine these cases with and:
#$ 1if i1sIsogram(word) and len(word) ==
if isIsogram(word):
if len(word) ==
count += 1

_ —

How to Read lestResults.txt

iSummaEy

" e —

test@_wordToolsModified (testl.BasicTests) ok
|test21_isIsogram (test2.WordToolTests) failed
Details

55 def test2l_isIsogram(self):
56 val = isIsogram('Aaron')
57 self.assertEqual(val, False)

‘Line 57 resulted in:
AssertionError: True !'= False

Last [Ime

Reviewed CSV file reading and accessing lists of lists

Used our knowledge about lists and loops to analyze “interesting”
properties of our data

- Focused on maintaining the state of variables when looping,
and how to update state based on condritionals

» Example functions: mostVowels, leastVowels

Joday's Plan

» Learn about writing and appending to files
* Review useful list methods that modify the list:

- .append(), .extend(),
.insert(), .remove(), .pop(), .sort()

* Discuss implications of mutability in Python

An Aside: Writing to Files

« We know how to read from files
* We can also write to files

- We can write all the results that we are computing into a file.To open
a new file for writing, we use Open with the mode ‘W'

- Use write() file method to add a string to a file

In [65]: fYears = len(yearList(allStudents, 25))
sophYears = len(yearList(allStudents, 24))

String method useful in printin
jYears = len(yearList(allStudents, 23)) 8 P &

sYears = len(yearList(allStudents, 22))
mostVowelNames = ', '.join(mostVowels(firstNames))

leastVowelNames = ', '.join(leastVowels(firstNames))

with open('studentFacts.txt', 'w') as sFile:
sFile.write('Fun facts about CS134 students:\n')# need newlines
sFile.write('Students with most vowels in their name: {}.\n'.format(mostVowelNames))
sFile.write('Students with least vowels in their name: {}.\n'.format(leastVowelNames))
sFile.write('No. of first years in CS134: {}.\n'.format(fYears))
sFile.write('No. of sophmores in CS134: {}.\n'.format(sophYears))
sFile.write('No. of juniors in CS134: {}\n'.format(jYears))
sFile.write('No. of seniors in CS134: {}\n'.format(sYears))

Format Printing for Python Strings

A convenient way to build strings with particular form is to use
the . Tormat () string method

Syntax: myString.format(xargs)
*kargs means it takes zero or more arguments
For every pair of braces (1 }), format consumes one argument

Argument is implicitly converted to a string and concatenated with
the remaining parts of the format string

Especially useful in printing to files

In [8]: "Hello, you {} world{}".format("silly",'!') # creates a new string
Out[8]: 'Hello, you silly world!

In [9]: print("Hello, {}.".format("you silly world!"))

Hello, you sillM

Appending to Files

- If a file already has something in It, opening it iIn w mode again will
erase all of its past contents

- We can also append something to an existing file without erasing the
contents. To do that we open in append a mode.

with open('studentFacts.txt', 'a') as sFile:
sFile.write('Goodbye.\n')

In [63]: cat studentFacts.txt

Fun facts about CS134 students:

Students with most vowels in their name: Adelaide, Giulianna.
No. of first years in CS134: 48.

No. of sophmores in CS134: 19.

No. of juniors in CS134: 7

No. of seniors in CS134: 3

Goodbye.

ist Mutability

A quick review of old and new methods that modify a list:
.append(), .extend(),
.pop(), .insert(), .remove(), .sort()

Direct Modification: Element Assisgnment

myList[1ndex] = i1tem : though not a method, an assignment
to a specific iIndex can modify a list directly

Example.

myList[1l] = 7 # assign 7 to index 1 of mylList

myL1st Before myList After

[1, 2, 3, 4] [1, 7, 3, 4]

append()

myList.append(item) . appends item to end of list
Example.

myList.append(5) # insert 5 at the end of the list

myL1st Before myList After

[1, 7, 3, 4] [1, 7, 3, 4, 5]

extend()

myList.extend([1temList]): appends all the items in
1temList to the end of myL1st.

Example.

myList.extend([6, 8]) # insert both 6 and 8 at
the end of the list

myL1st Before myList After

1, 7, 3, 4, 5] 1, 7, 3, 4, 5, 6, &]

slelel§)

myList.pop(index): Removes the item at a given index (int)

and returns it. If no index is given, by default, pop () removes and
returns the last item from the list.

Example.
. returns
val = mylList.pop(3) » val = 4
myL1st Before myList After

[1, 7’ 3) 4, 5, 6) 8] I:l) 7, 3, 5) 6, 8:|

slelel§)

myList.pop(index): Removes the item at a given index (int)

and returns it. If no index is given, by default, pop () removes and
returns the last item from the list.

Example. No Index
returns
val = myList.pop() » val = 8
myL1st Before myList After

[1, 7, 3, 5, 6, 8] [1, 7’ 3, 5, 6]

insert()

myList.1insert(index, item): insertsitem atindex (int) in
myL1ist,all items to the right of index shift over to make room

Example.

myList.insert(0,11) # insert 11 at index 0

myL1st Before myList After

[1, 7) 3, 5, 6] [11, 1, 7’ 3, 5, 6]

insert()

myList.1insert(index, item): insertsitem atindex (int) in
myL1ist,all items to the right of index shift over to make room

inserting at an index out of range

Example.

myList.insert(10,12) # insert 12 at index 10

myL1st Before myL1ist After

[11, 1, 7, 3, 5, 6] [11, 1, 7, 3, 5, 6, 12]

remove()

myList.remove(item): removes first occurrence of item from
myL1ist, all items to the right of removed item shift to the left by one

(Unlike pop(), item Is not returned!)

Example.

myList.remove(12) # remove 12 from mylList

myL1st Before myList After

[11, 1, 7, 3, 5, 6, 12] [11, 1, 7, 3, 5, 6]

sort()

myList.sort(item): sortsthe list in place in ascending order

Example.

myList.sort() # sort by mutating myList

myL1st Before myL1st After

(11, 1, 7, 3, 5, 6] [1, 3, 5, 6, 7, 11]

[dentity and Value

Value vs |dentity

Python is an object oriented language: everything is an object!

- An object’s identity never changes once It has been created; think of it

as the object’s address in memory

- The id() function returns an integer representing an object’s

identity (or address)

- An object’s value is the value assigned to the object when It is created

In [1]: num = 5

In [2]: id(num) identity: mem address

Out[2]: 4486937008 aum where 5 is stored

value: 5

Value vs |dentity

- An object’s identity never changes once It has been created; think of it

as the object’s address in memory
+ On the other hand, an object’s value can change

- Objects whose values can change are called mutable; objects whose

values cannot change are called immutable

In [1]: num = 5

id: 4486937008

In [2]: id(num) Memory address

Out[2]: 4486937008 num

Variable names like hum point to memory
addresses of stored value

Comparing Value vs Identity

- The == operator compares the value of an object (i.e,, are the
contents of the objects the same!)

+ The 1S operator compares the identity of two objects (i.e., do they
have the same memory address?)

- varl is var2isequivalentto id(varl) == id(var2)

In [1]: num = 5

id: 4486937008

In [2]: id(num) Memory address

num
Out[2]: 4486937008 i

Variable names like hum point to memory
addresses of stored value

Mutabllity in Python

Strings, Ints, Floats are Immutable

Once you create them, their value cannot be changed!

All functions and methods that manipulate these objects return a new object

and do not modify the original object

Lists are Mutable
List values can be changed
Ve just reviewed how we can mutate/change what'’s in a list using methods

The mutability of lists has many implications such as aliasing

Aliasing happens when the value of one variable is assigned to another variable

Can have multiple names for the same object

Ints, Floats are Immutable

In [1]: num = 5

In [2]: id(num) id: 4486937008
Out[2]: 4486937008 num

In [3]: num = num + 1

In [4]: id(num)

Has the identity of num
changed?

Attempts to change an immutable object creates a new object

Ints, Floats are Immutable

In [1]: num = 5
In [2]: id(num) id: 4486937008
Out[2]: 4486937008 num
In [3]: num = num + 1 .
id: 4486937008
In [4]: id(num)

Out[4]: 4486937040

ldentity of ints cannot bg charlwged, U _>®
nuUmM assumes a hew identity

id: 4486937040

Attempts to change an immutable object creates a new object

In [1]:

In [2]:

In [3]:

Out[3]:

In [4]:

In [5]:

out[5]:

Strings are

word = "Williams"
college = word

word == college

True

print(id(word), id(college))

4518582576 4518582576

word is college

True

Immutable

id: mem addr (4518582576)

\

word college

Variable names point to memory
addresses of stored value

Even though word and college have
the same identity and value, if we
update one of them, it just assumes
a new identity!

Attempts to change an immutable object creates a new object

Strings are Immutable

In [1]: word = "Williams"
In [2]: college = word

In [3]: word == college

Out[3]: True

In [4]: print(id(word), id(college))

4518582576 4518582576 word college

In [5]: word is college

Out[5]: True
In [6]: word = "Wellesley"

In [7]: print(id(word), id(college))

4518871920 4518582576

In [8]: word is college

Out[8]: False

Attempts to change an immutable object creates a new object

String Methods/Operations Return New Strings

» String methods like « lower(), .upper() returna
new string

- Sequence operations, like slicing [], return new sequences

In [1]: name = "gryffindor"

In [2]: id(name)

Out[2]: 4574657776

"gryffindor'

name

String Methods/Operations Return New Strings

» String methods like « lower(), .upper() returna

new string

- Sequence operations, like slicing [], return new sequences

In [1]:

In [2]:
Out[2]:
Y . Y
ryffindor
ary In [3]:
In [4]:

Out[4]:
name

name = "gryffindor"

id(name)

4574657776

name = name[4:8]

id(name)

4574684720

Sequence Operations Return New Seguences

The following operations, that can be performed on both
lists and strings, and always return a new list/string

[::] slicing operator: returns a new sliced sequence
assisnment of a new sequence to a variable
. names = 'Rohit and Jeannie'’
. myList = [1, 2, 3]

concatenation (+) always creates a new sequence

