
CS 134  
Lists & Mutability

Announcements & Logistics
• Lab 3 graded feedback will be returned soon: make sure to review it

• Lab 4 Part 1 is due tonight/tomorrow at 11 pm

• We will run some tests and return automated feedback

• Part 2 is due next week

• Homework 5 will be posted later today, due Mon at 11pm

• (Probably) Last HW before the midterm

• Midterm: Thur Mar 17 in evening

• Review session: Tue Mar 15 in evening (room TBD)

Do You Have Any Questions?

How to Read GradeSheet.txt
GRADE SHEET FOR CS134 LAB 3 ("Building a Python Toolbox"):

Requirements of this lab:

 0. The toolbox (wordTools.py)

 + Module documentation string ("""...""" at top of module)

 ~ Fixed doctest for canon

 - Some other item

 1. ...

Grade: B

Comments from Graders:

Specific comments you should pay attention to.

+ Good

~ Okay

- Needs work

How to Read Feedback in Code

 ...

 #$ Combine these cases with and:

 #$ if isIsogram(word) and len(word) == 7:

 if isIsogram(word):

 if len(word) == 7:

 count += 1

 ...

How to Read TestResults.txt
Summary

=======

test0_wordToolsModified (test1.BasicTests) ok

...

test21_isIsogram (test2.WordToolTests) failed

... 

Details

=======

Failed: test21_isIsogram (test2.WordToolTests)

--

 55 def test21_isIsogram(self):

 56 val = isIsogram('Aaron')

 57 self.assertEqual(val, False)

--

Line 57 resulted in:

 AssertionError: True != False

Last Time
• Reviewed CSV file reading and accessing lists of lists

• Used our knowledge about lists and loops to analyze “interesting”
properties of our data

• Focused on maintaining the state of variables when looping,
and how to update state based on conditionals

• Example functions: mostVowels, leastVowels

Today’s Plan
• Learn about writing and appending to files

• Review useful list methods that modify the list:

• .append(), .extend(),  
.insert(), .remove(), .pop(), .sort()

• Discuss implications of mutability in Python

An Aside: Writing to Files
• We know how to read from files

• We can also write to files

• We can write all the results that we are computing into a file. To open

a new file for writing, we use open with the mode ‘w'.

• Use .write() file method to add a string to a file

String method useful in printing

Format Printing for Python Strings
• A convenient way to build strings with particular form is to use

the .format() string method

Syntax: myString.format(*args)

*args means it takes zero or more arguments
• For every pair of braces ({}), format consumes one argument

• Argument is implicitly converted to a string and concatenated with

the remaining parts of the format string

• Especially useful in printing to files

Appending to Files
• If a file already has something in it, opening it in w mode again will

erase all of its past contents

• We can also append something to an existing file without erasing the

contents. To do that we open in append a mode.

List Mutability
A quick review of old and new methods that modify a list:

 .append(), .extend(),

.pop(), .insert(), .remove(), .sort()

Direct Modification: Element Assignment

myList[index] = item : though not a method, an assignment
to a specific index can modify a list directly

  
Example. 

myList[1] = 7 # assign 7 to index 1 of myList

[1, 2, 3, 4] [1, 7, 3, 4]

myList		Before myList		After

append()
myList.append(item) : appends item to end of list

  
Example. 

myList.append(5) # insert 5 at the end of the list

[1, 7, 3, 4] [1, 7, 3, 4, 5]

myList		Before myList		After

extend()
myList.extend([itemList]): appends all the items in
itemList to the end of myList.

Example.  

myList.extend([6, 8]) # insert both 6 and 8 at
the end of the list

[1, 7, 3, 4, 5] [1, 7, 3, 4, 5, 6, 8]

myList		Before myList		After

pop()
myList.pop(index): Removes the item at a given index (int)
and returns it. If no index is given, by default, pop() removes and
returns the last item from the list.

Example.

val = myList.pop(3) val = 4

[1, 7, 3, 4, 5, 6, 8] [1, 7, 3, 5, 6, 8]

returns

myList		Before myList		After

pop()
myList.pop(index): Removes the item at a given index (int)
and returns it. If no index is given, by default, pop() removes and
returns the last item from the list.

Example.

val = myList.pop()
 val = 8

No Index

[1, 7, 3, 5, 6, 8] [1, 7, 3, 5, 6]

returns

myList		Before myList		After

insert()
myList.insert(index, item): inserts item at index (int) in
myList, all items to the right of index shift over to make room

Example.

myList.insert(0,11) # insert 11 at index 0

[11, 1, 7, 3, 5, 6][1, 7, 3, 5, 6]

myList		Before myList		After

insert()
myList.insert(index, item): inserts item at index (int) in
myList, all items to the right of index shift over to make room

Example.

myList.insert(10,12) # insert 12 at index 10

[11, 1, 7, 3, 5, 6, 12]

inserting at an index out of range

[11, 1, 7, 3, 5, 6]

myList		Before myList		After

remove()
myList.remove(item): removes first occurrence of item from
myList, all items to the right of removed item shift to the left by one

(Unlike pop(), item is not returned!)

Example.

myList.remove(12) # remove 12 from myList

[11, 1, 7, 3, 5, 6][11, 1, 7, 3, 5, 6, 12]

myList		Before myList		After

sort()
myList.sort(item): sorts the list in place in ascending order

Example.

myList.sort() # sort by mutating myList

[1, 3, 5, 6, 7, 11][11, 1, 7, 3, 5, 6]

myList	Before myList	After

Identity and Value

Value vs Identity
• Python is an object oriented language: everything is an object!

• An object’s identity never changes once it has been created; think of it
as the object’s address in memory

• The id() function returns an integer representing an object’s
identity (or address)

• An object’s value is the value assigned to the object when it is created

•

5

num

identity: mem address
where 5 is stored

value: 5

Value vs Identity
• An object’s identity never changes once it has been created; think of it

as the object’s address in memory

• On the other hand, an object’s value can change

• Objects whose values can change are called mutable; objects whose
values cannot change are called immutable

• 5

num

id: 4486937008

Variable names like num point to memory
addresses of stored value

Memory address

• The == operator compares the value of an object (i.e., are the
contents of the objects the same?)

• The is operator compares the identity of two objects (i.e., do they
have the same memory address?)

• var1 is var2 is equivalent to id(var1) == id(var2)

Comparing Value vs Identity

5

num

id: 4486937008

Variable names like num point to memory
addresses of stored value

Memory address

Mutability in Python

• Once you create them, their value cannot be changed!

• All functions and methods that manipulate these objects return a new object

and do not modify the original object 
 

• List values can be changed

• We just reviewed how we can mutate/change what’s in a list using methods

• The mutability of lists has many implications such as aliasing

• Aliasing happens when the value of one variable is assigned to another variable

• Can have multiple names for the same object

Lists are Mutable

Strings, Ints, Floats are Immutable

Ints, Floats are Immutable
5

num

id: 4486937008

Has the identity of num
changed?

Attempts to change an immutable object creates a new object

5

num

5

6num

id: 4486937008

id: 4486937008

id: 4486937040

Identity of ints cannot be changed,
num assumes a new identity

Attempts to change an immutable object creates a new object

Ints, Floats are Immutable

Strings are Immutable

Even though word and college have
the same identity and value, if we

update one of them, it just assumes
a new identity!

‘Williams’

word college

Attempts to change an immutable object creates a new object

id: mem addr (4518582576)

Variable names point to memory
addresses of stored value

Strings are Immutable

Attempts to change an immutable object creates a new object

'Williams'

word college

'Wellesley'

String Methods/Operations Return New Strings

• String methods like .lower(), .upper() return a
new string

• Sequence operations, like slicing [:], return new sequences

 'gryffindor'

name

 'gryffindor'

name

'find'

• String methods like .lower(), .upper() return a
new string

• Sequence operations, like slicing [:], return new sequences

String Methods/Operations Return New Strings

Sequence Operations Return New Sequences

• The following operations, that can be performed on both
lists and strings, and always return a new list/string

• [::] slicing operator: returns a new sliced sequence

• assignment of a new sequence to a variable

• names = 'Rohit and Jeannie'

• myList = [1, 2, 3]

• concatenation (+) always creates a new sequence

