
CS 134:
Nested Lists & Writing to Files

Announcements & Logistics
• Homework 4 is out on GLOW, due tonight at 11 pm
• Lab 4 was released on Friday: has two parts!

• Part 1 is due Wed/Thurs at 11 pm; Part 2 is due Mar 9/10 at 11 pm
• Midterm reminder: Thur Mar 17 evening exam (more details

forthcoming regarding format)
• Time Option 1: 6 pm - 7:30 pm
• Time Option 2: 8 pm - 9:30 pm
• Two rooms (one for reduced distractions/extra time)
• Let us know asap if you have any class conflicts or need additional

accommodations
• Extra time accommodations should attend the early session if possible

Do You Have Any Questions?

Last Time
• Discussed file reading using lists and strings

• Used string methods .strip(), .split()
• Used list methods .append(), .extend(), .count()

• Learned about list comprehensions as a way to simplify list
accumulations

• Leads to simpler, more succinct code
• When a mapping or filter pattern comes up, list comprehensions

are more elegant than defining an accumulation variable and using
an explicit loop with list.append()

• Also began exploring lists of lists

Today’s Plan
• Explore more CSV file reading and accessing lists of lists

• Use our knowledge about lists and loops to analyze interesting
properties of our data

• Focus on maintaining the state of variables when looping, and
how to update state based on conditionals

• Help prepare for Lab 4
• Briefly look at writing/appending to files

Recap: Lists of Lists!
• We have already seen lists of strings
• We can also have lists of lists (sometimes called a two-dimensional list)!
• Often arise when using list comprehensions

• Suppose we have a list of lists of strings called myList
• word = myList[a][b] (# word is a string)

• a is index into “outer” list (identifies which inner list we want)

• b is index into “inner” list (identifies which element within the inner list)
• Be careful with lists of lists of strings vs lists of strings

myList = [[‘cat’, ’frog’],
 [‘dog’, ‘toad’],
 [‘cow’, ‘duck’]]

myList[1][0] is ‘dog’

myList = [‘cat’, ’frog’,
 ‘dog’, ‘toad’,
 ‘cow’, ‘duck’]

myList[1][0] is ‘f’

• Suppose we want to create a list of lists of strings using our student data

expression results in a listitem sequence

Lists of Lists and Comprehensions

Lists of Lists and Comprehensions
• Suppose we want to create a list of lists of strings using our student data

list of lists of strings

expression results in a list

item sequence

expression results in a listitem sequence

More List Comprehensions

• Generate list of only last names using allStudents

• Generate list of only first names

split() first name, return first element
(effectively removes middle initial)

allStudents:

Exercise: Student Fun Facts!
• Write a function characterList which takes in two

arguments rosterList (list of lists) and character (a string)
and returns the list of students in the class whose first name starts
with character.

• Can we do this with a list comprehension?

Exercise: Student Fun Facts!
• Write a function mostVowels that can be used to compute the list

of students with the most vowels in their first name. (Hint: use
countVowels().)

Exercise: Student Fun Facts!
• Write a function leastVowels that can be used to compute the

list of students with the least vowels in their first name. (Hint: use
countVowels().)

Exercise: Student Fun Facts!
• Write a function yearList which takes in two

arguments, rosterList (list of lists of strings)
and year (int) and returns the list of students in the class with
that graduating year

An Aside: Writing to Files
• We know how to read from files

• We can also write to files
• We can write all the results that we are computing into a file. To open

a new file for writing, we use open with the mode ‘w'.

• Use .write() file method to add a string to a file

Format Printing for Python Strings
• A convenient way to build strings with particular form is to use

the .format() string method
Syntax: myString.format(*args)

*args means it takes zero or more arguments
• For every pair of braces ({}), format consumes one argument
• Argument is implicitly converted to a string and concatenated with

the remaining parts of the format string
• Especially useful in printing to files

Appending to Files
• If a file already has something in it, opening it in w mode again will

erase all of its past contents
• We can also append something to an existing file without erasing the

contents. To do that we open in append a mode.

Lab 4

Lab 4 Goals
• In Lab 4 you will implement several voting algorithms and helpful

functions for manipulating election data

• Lab 4 will give you experience with :
• Lists of strings
• Lists of lists of strings
• Loops
• Using string and list methods
• File reading

• Pay close attention to expected input (lists of strings, list of lists of strings,
etc) and expected output

Ballot Data
• Ballot data is represented in various text files
• Each line represents a single voter’s ranked choices

Working with Ballot Data

You’ll use string and list methods to
process the data and implement several

different voting algorithms

